Hybrid paper-based microfluidics: combination of paper-based analytical device (µPAD) and digital microfluidics (DMF) on a single substrate

Abstract

Microfluidics found its place in point of care diagnostics. Microfluidic devices on paper substrate are proposed on both channel-based and digital microfluidics (DMF). But fluid flow controlling on microfluidics paper-based analytical devices (µPADs) and post-processing on DMF devices have limitations. In this work a new hybrid paper-based device is proposed with the aim of resolving these limitations and expanding the microfluidics capabilities in point of care diagnostics. The hybrid paper-based microfluidics (HPMF) device is composed of a DMF device following a µPAD in a single substrate, in which the DMF part performs the preprocessing steps of the test on droplets and transfers the resulting droplet to the µPAD part of the device for post-processing steps. The fabrication process of the device is rapid and very low cost due to use of paper substrate and out of clean-room processes. The results show that the proposed HPMF device can perform droplet operations: moving, mixing, and splitting.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Abadian A, Jafarabadi-Ashtiani S (2014) Paper-based digital microfluidics. Microfluid Nanofluid 16:989–995

    Article  Google Scholar 

  2. Abdelgawad M, Wheeler AR (2007) Rapid prototyping in copper substrates for digital microfluidics. Adv Mater 19:133–137

    Article  Google Scholar 

  3. Adkins J, Boehle K, Henry C (2015) Electrochemical paper-based microfluidic devices. Electrophoresis 36:1811–1824

    Article  Google Scholar 

  4. Alahmad W, Uraisin K, Nacapricha D, Kaneta T (2016) Miniaturized chemiluminescence detection system for a microfluidic paper-based analytical device and its application to the determination of chromium (III). Anal Methods 8:5414–5420

    Article  Google Scholar 

  5. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095

    Article  Google Scholar 

  6. Chitnis G, Ding Z, Chang C-L, Savran CA, Ziaie B (2011) Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11:1161–1165

    Article  Google Scholar 

  7. Choi K, Ng AH, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem 5:413–440

    Article  Google Scholar 

  8. Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83:1300–1306

    Article  Google Scholar 

  9. Dharmaraja S et al (2013) Programming paper networks for point of care diagnostics. In: SPIE MOEMS-MEMS, 2013. International Society for Optics and Photonics, pp 86150X-86150X-86111

  10. Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136:77–82

    Article  Google Scholar 

  11. Fenton EM, Mascarenas MR, López GP, Sibbett SS (2008) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1:124–129

    Article  Google Scholar 

  12. Fobel R, Kirby AE, Ng AH, Farnood RR, Wheeler AR (2014) Paper microfluidics goes digital. Adv Mater 26:2838–2843

    Article  Google Scholar 

  13. Fu E, Kauffman P, Lutz B, Yager P (2010) Chemical signal amplification in two-dimensional paper networks. Sens Actuators B Chem 149:325–328

    Article  Google Scholar 

  14. Fu E, Liang T, Houghtaling J, Ramachandran S, Ramsey SA, Lutz B, Yager P (2011a) Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format. Anal Chem 83:7941–7946

    Article  Google Scholar 

  15. Fu E, Ramsey SA, Kauffman P, Lutz B, Yager P (2011b) Transport in two-dimensional paper networks. Microfluid Nanofluid 10:29–35

    Article  Google Scholar 

  16. Ge L, Yan J, Song X, Yan M, Ge S, Yu J (2012) Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 33:1024–1031

    Article  Google Scholar 

  17. Gong J, Kim C-J (2008) Direct-referencing two-dimensional-array digital microfluidics using multilayer printed circuit board. J Microelectromech Syst 17:257–264

    Article  Google Scholar 

  18. Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, Xu F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597

    Article  Google Scholar 

  19. Klasner SA, Price AK, Hoeman KW, Wilson RS, Bell KJ, Culbertson CT (2010) Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva. Anal Bioanal Chem 397:1821–1829

    Article  Google Scholar 

  20. Ko H et al (2014) Active digital microfluidic paper chips with inkjet-printed patterned electrodes. Adv Mater 26:2335–2340

    Article  Google Scholar 

  21. Li X, Tian J, Shen W (2010) Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose 17:649–659

    Article  Google Scholar 

  22. Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6:011301

    Article  Google Scholar 

  23. Li X, Zwanenburg P, Liu X (2013) Magnetic timing valves for fluid control in paper-based microfluidics. Lab Chip 13:2609–2614

    Article  Google Scholar 

  24. Li S, Wang Y, Ge S, Yu J, Yan M (2015a) Self-powered competitive immunosensor driven by biofuel cell based on hollow-channel paper analytical devices. Biosens Bioelectron 71:18–24

    Article  Google Scholar 

  25. Li X, Zhao C, Liu X (2015b) A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection. Microsyst Nanoeng 1:1–7

    Article  Google Scholar 

  26. Liang L, Ge S, Li L, Liu F, Yu J (2015) Microfluidic paper-based multiplex colorimetric immunodevice based on the catalytic effect of Pd/Fe 3 O 4@ C peroxidase mimetics on multiple chromogenic reactions. Anal Chim Acta 862:70–76

    Article  Google Scholar 

  27. Liu F, Zhang C (2015) A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of Listeria monocytogenes. Sens Actuators B Chem 209:399–406

    Article  Google Scholar 

  28. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320

    Article  Google Scholar 

  29. Medina A, Pérez-Rosales C, Pineda A, Higuera F (2001) Imbibition in pieces of paper with different shapes. Revista mexicana de física 47:537–541

    Google Scholar 

  30. Ramdzan AN, Almeida MIG, McCullough MJ, Kolev SD (2016) Development of a microfluidic paper-based analytical device for the determination of salivary aldehydes. Anal Chim Acta 919:47–54

    Article  Google Scholar 

  31. Samiei E, Tabrizian M, Hoorfar M (2016) A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip 16(13). doi:10.1039/c6lc00387g

    Article  Google Scholar 

  32. Santhiago M, Henry CS, Kubota LT (2014) Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol. Electrochim Acta 130:771–777

    Article  Google Scholar 

  33. Schiff H (1866) Eine neue reihe organischer diamine. Justus Liebigs Annalen der Chemie 140:92–137

    Article  Google Scholar 

  34. Sher M, Zhuang R, Demirci U, Asghar W (2017) Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev Mol Diagn (just accepted)

  35. Songjaroen T, Dungchai W, Chailapakul O, Laiwattanapaisal W (2011) Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta 85:2587–2593

    Article  Google Scholar 

  36. Tenda K, Ota R, Yamada K, Henares TG, Suzuki K, Citterio D (2016) High-resolution microfluidic paper-based analytical devices for sub-microliter sample analysis. Micromachines 7:80

    Article  Google Scholar 

  37. Trinder P (1969) Glucose GOD-PAP method enzymatic colorimetric method. Ann Clin Biochem 6(24):12481676

    Google Scholar 

  38. Wang Y, Wang S, Ge S, Wang S, Yan M, Zang D, Yu J (2014) Ultrasensitive chemiluminescence detection of DNA on a microfluidic paper-based analytical device. Monatshefte für Chemie-Chem Mon 145:129–135

    Article  Google Scholar 

  39. Watson MW, Jebrail MJ, Wheeler AR (2010) Multilayer hybrid microfluidics: a digital-to-channel interface for sample processing and separations. Anal Chem 82:6680–6686

    Article  Google Scholar 

  40. Yafia M, Shukla S, Najjaran H (2015) Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing. J Micromech Microeng 25:057001

    Article  Google Scholar 

  41. Yu L, Shi ZZ (2015) Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm®. Lab Chip 15:1642–1645

    Article  Google Scholar 

  42. Zhang Y, Zhao H, Hassinger I, Brinson LC, Schadler LS, Chen W (2015) Microstructure reconstruction and structural equation modeling for computational design of nanodielectrics. Integrating Mater Manuf Innov 4:1–26

    Article  Google Scholar 

  43. Zhao C, Thuo MM, Liu X (2013) A microfluidic paper-based electrochemical biosensor array for multiplexed detectionof metabolic biomarkers. Sci Technol Adv Mate 14(5):054402. doi:10.1088/1468-6996/14/5/054402

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Nourbakhsh J. Trading Company for supplying NEVOSIL® SI 7200.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shahin Jafarabadi Ashtiani.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abadian, A., Sepehri Manesh, S. & Jafarabadi Ashtiani, S. Hybrid paper-based microfluidics: combination of paper-based analytical device (µPAD) and digital microfluidics (DMF) on a single substrate. Microfluid Nanofluid 21, 65 (2017). https://doi.org/10.1007/s10404-017-1899-2

Download citation

Keywords

  • Digital microfluidics
  • Microfluidics paper-based analytical devices
  • Hybrid paper-based microfluidics
  • Screen printing