Electric field driven addressing of ATPS droplets in microfluidic chips

Abstract

The possibility of controlled droplet motion (droplet addressing) mediated by DC electric field in aqueous two-phase systems (ATPS) is here reported for the first time. Three ATPS of polyethylene glycol (PEG)/salt type, namely PEG/phosphate, PEG/sulphate, and PEG/carbonate, were selected for this study. We observed fast motion of salty droplets dispersed in PEG continuous phase induced by electric field of relative low strength. Hence, three fluidic systems with separated electrode chambers for the evaluation of electrophoretic mobilities and for addressing experiments were fabricated. Electrophoretic mobilities of salty droplets always exceeded the value of \(1\times 10^{-7}\, \hbox {m}^2\hbox {V}^{-1}\hbox {s}^{-1}\), which is about by one magnitude higher value than those typically measured in water–oil droplet systems. The electrophoretic mobilities in systems with free surface are the same or even smaller than in closed microfluidic structures, which is accounted mainly to the fact that a significant part of salty droplets is exposed to air and does not contribute to droplet forcing. Series of addressing and merging experiments in a microfluidic chip shows that DC electric field can be used as a powerful tool for smart manipulation of droplets in microfluidic systems with PEG/salt ATPS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ahn B, Lee K, Panchapakesan R, Oh KW (2011) On-demand electrostatic droplet charging and sorting. Biomicrofluidics 5(2):024113. doi:10.1063/1.3604393

    Article  Google Scholar 

  2. Asenjo J, Mistry S, Andrews B, Merchuk J (2002) Phase separation rates of aqueous two-phase systems: correlation with system properties. Biotechnol Bioeng 79(2):217–223. doi:10.1002/bit.10273

    Article  Google Scholar 

  3. Banik R, Santhiagu A, Kanari B, Sabarinath C, Upadhyay S (2003) Technological aspects of extractive fermentation using aqueous two-phase systems. World J Microbiol Biotechnol 19(4):337–348. doi:10.1023/A:1023940809095

    Article  Google Scholar 

  4. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundemantals and applications. Wiley, Hoboken

    Google Scholar 

  5. Beranek P, Flittner R, Hrobar V, Ethgen P, Pribyl M (2014) Oscillatory motion of water droplets in kerosene above co-planar electrodes in microfluidic chips. AIP Adv 4(6):067103. doi:10.1063/1.4881675

    Article  Google Scholar 

  6. Brooks D, Sharp K, Bamberger S, Tamblyn C, Seaman G, Walter H (1984) Electrostatic and electrokinetic potentials in 2 polymer aqueous phase systems. J Colloid Interface Sci 102(1):1–13. doi:10.1016/0021-9797(84)90195-4

    Article  Google Scholar 

  7. Campos CDM, Park JK, Neuzil P, da Silva JAF, Manz A (2014) Membrane-free electroextraction using an aqueous two-phase system. RSC Adv 4(90):49485–49490. doi:10.1039/c4ra09246e

    Article  Google Scholar 

  8. Cao J, Koehler JM (2015) Droplet-based microfluidics for microtoxicological studies. Eng Life Sci 15(3, SI):306–317. doi:10.1002/elsc.201400074

    Article  Google Scholar 

  9. Choi YH, Song YS, Kim DH (2010) Droplet-based microextraction in the aqueous two-phase system. J Chromatogr A 1217(24):3723–3728. doi:10.1016/j.chroma.2010.04.015

    Article  Google Scholar 

  10. Deen W (1998) Analysis of transport phenomena. Oxford University Press, New York

    Google Scholar 

  11. Frampton JP, Lai D, Sriram H, Takayama S (2011) Precisely targeted delivery of cells and biomolecules within microchannels using aqueous two-phase systems. Biomed Microdevices 13(6):1043–1051. doi:10.1007/s10544-011-9574-y

    Article  Google Scholar 

  12. Grilo AL, Raquel Aires-Barros M, Azevedo AM (2016) Partitioning in aqueous two-phase systems: fundamentals. Appl Trends Sep Purif Rev 45(1):68–80. doi:10.1080/15422119.2014.983128

    Article  Google Scholar 

  13. Hahn T, Hardt S (2011) Concentration and size separation of DNA samples at liquid–liquid interfaces. Anal Chem 83(14):5476–5479. doi:10.1021/ac201228v

    Article  Google Scholar 

  14. Hardt S, Hahn T (2012) Microfluidics with aqueous two-phase systems. Lab Chip 12(3):434–442. doi:10.1039/c1lc20569b

    Article  Google Scholar 

  15. Hase M, Watanabe SN, Yoshikawa K (2006) Rhythmic motion of a droplet under a dc electric field. Phys Rev E 74:046301. doi:10.1103/PhysRevE.74.046301

    Article  Google Scholar 

  16. Huang Y, Meng T, Guo T, Li W, Yan W, Li X, Wang S, Tong Z (2014) Aqueous two-phase extraction for bovine serum albumin (BSA) with co-laminar flow in a simple coaxial capillary microfluidic device. Microfluid Nanofluid 16(3):483–491. doi:10.1007/s10404-013-1245-2

    Article  Google Scholar 

  17. Huh YS, Jeong CM, Chang HN, Lee SY, Hong WH, Park TJ (2010) Rapid separation of bacteriorhodopsin using a laminar-flow extraction system in a microfluidic device. Biomicrofluidics 4(1):014103. doi:10.1063/1.3298608

    Article  Google Scholar 

  18. Im DJ, Noh J, Moon D, Kang IS (2011) Electrophoresis of a charged droplet in a dielectric liquid for droplet actuation. Anal Chem 83(13):5168–5174. doi:10.1021/ac200248x

    Article  Google Scholar 

  19. Jacinto MJ, Soares RRG, Azevedo AM, Chu V, Tover A, Conde JP, Aires-Barros MR (2015) Optimization and miniaturization of aqueous two phase systems for the purification of recombinant human immunodeficiency virus-like particles from a CHO cell supernatant. Sep Purif Technol 154:27–35. doi:10.1016/j.seppur.2015.09.006

    Article  Google Scholar 

  20. Jung YM, Oh HC, Kang IS (2008) Electrical charging of a conducting water droplet in a dielectric fluid on the electrode surface. J Colloid Interface Sci 322(2):617–623. doi:10.1016/j.jcis.2008.04.019

    Article  Google Scholar 

  21. Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng ZD, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Edit 45(16):2556–2560. doi:10.1002/anie.200503540

    Article  Google Scholar 

  22. Madhusudhan MC, Chethana S, Raghavarao KSMS (2011) Electrokinetic demixing of polymer/salt systems containing biomolecules. Sep Sci Technol 46(5):727–733. doi:10.1080/01496395.2010.529098

    Article  Google Scholar 

  23. Matsumoto S (1998) Proteins and sugars in water/oil/water emulsions. In: Ohshima H, Furusawa K (eds) Electrical phenomena at interfaces, vol 32. Marcel Dekker, New York, p 600

    Google Scholar 

  24. Munchow G, Hardt S, Kutter JP, Drese KS (2007) Electrophoretic partitioning of proteins in two-phase microflows. Lab Chip 7(1):98–102. doi:10.1039/b612669n

    Article  Google Scholar 

  25. Munchow G, Schoenfeld F, Hardt S, Graf K (2008) Protein diffusion across the interface in aqueous two-phase systems. Langmuir 24(16):8547–8553. doi:10.1021/la800956j

    Article  Google Scholar 

  26. Nagaraj N, Chethana S, Raghavarao K (2005) Electrokinetic demixing of aqueous two-phase polymer/salt systems. Electrophoresis 26(1):10–17. doi:10.1002/elps.200406122

    Article  Google Scholar 

  27. Novak U, Lakner M, Plazl I, Znidarsic-Plazl P (2015) Experimental studies and modeling of alpha-amylase aqueous two-phase extraction within a microfluidic device. Microfluid Nanofluid 19(1):75–83. doi:10.1007/s10404-015-1550-z

    Article  Google Scholar 

  28. Ohshima H (1998a) Electric double layer. In: Ohshima H, Furusawa K (eds) Electrical phenomena at interfaces, vol 1. Marcel Dekker, New York, pp 1–18

    Google Scholar 

  29. Ohshima H (1998b) Interfacial electrokinetic phenomena. In: Ohshima H, Furusawa K (eds) Electrical phenomena at interfaces, vol 2. Marcel Dekker, New York, pp 38–39

    Google Scholar 

  30. Pfennig A, Schwerin A, Gaube J (1998) Consistent view of electrolytes in aqueous two-phase systems. J Chromatogr B 711(1–2):45–52. doi:10.1016/S0378-4347(97)00593-8

    Article  Google Scholar 

  31. Powell BD, Alexander AE (1952) The mobility of oil droplets, interfacial tension measurements, and gegen ion adsorption in soap solutions. Can J Chem 30(12):1044–1055. doi:10.1139/v52-123

    Article  Google Scholar 

  32. Raghavarao K, Stewart R, Rudge S, Todd P (1998) Electrokinetic demixing of aqueous two-phase systems. 3. Drop electrophoretic mobilities and demixing rates. Biotechnol Prog 14(6):922–930. doi:10.1021/bp9800889

    Article  Google Scholar 

  33. Rao K, Stewart R, Todd P (1991) Electrokinetic demixing of 2-phase aqueous polymer systems.2. Separation rates of polyethylene-glycol maltodextrin mixtures. Sep Sci Technol 26(2):257–267. doi:10.1080/01496399108050470

    Article  Google Scholar 

  34. Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics. Rep Prog Phys 75(1):016601. doi:10.1088/0034-4885/75/1/016601

    Article  Google Scholar 

  35. Silva DFC, Azevedo AM, Fernandes P, Chu V, Conde JP, Aires-Barros MR (2012) Design of a microfluidic platform for monoclonal antibody extraction using an aqueous two-phase system. J Chromatogr A 1249:1–7. doi:10.1016/j.chroma.2012.05.089

    Article  Google Scholar 

  36. Slouka Z, Pribyl M, Snita D, Postler T (2007) Transient behavior of an electrolytic diode. Phys Chem Chem Phys 9(39):5374–5381. doi:10.1039/b707197c

    Article  Google Scholar 

  37. Soares RRG, Novo P, Azevedo AM, Fernandes P, Aires-Barros MR, Chu V, Conde JP (2014) On-chip sample preparation and analyte quantification using a microfluidic aqueous two-phase extraction coupled with an immunoassay. Lab Chip 14(21):4284–4294. doi:10.1039/c4lc00695j

    Article  Google Scholar 

  38. Song YS, Choi YH, Kim DH (2007) Microextraction in a tetrabutylammonium bromide/ammonium sulfate aqueous two-phase system and electrohydrodynamic generation of a micro-droplet. J Chromatogr A 1162(2):180–186. doi:10.1016/j.chroma.2007.06.032

    Article  Google Scholar 

  39. Svoboda M, Slouka Z, Schrott W, Cervenka P, Pribyl M, Snita D (2010) Fabrication of plastic microchips with gold microelectrodes using techniques of sacrificed substrate and thermally activated solvent bonding. Microelectron Eng 87(5–8):1590–1593. doi:10.1016/j.mee.2009.11.010

    Article  Google Scholar 

  40. Taylor AJ, Wood FW (1957) The electrophoresis of hydrocarbon droplets in dilute solutions of electrolytes. Trans Faraday Soc 53:523–529. doi:10.1039/TF9575300523

    Article  Google Scholar 

  41. Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220. doi:10.1039/B715524G

    Article  Google Scholar 

  42. Tucek J, Beranek P, Vobecka L, Slouka Z, Pribyl M (2016) Electric field driven addressing of oil-in-water droplets in the presence of gradients of ionic and nonionic surfactants. IEEE Trans Ind Appl 52(5):4337–4344. doi:10.1109/TIA.2016.2563391

    Article  Google Scholar 

  43. Wei D, Zhu J, Cao X (2002) Enzymatic synthesis of cephalexin in aqueous two-phase systems. Biochem Eng J 11(2–3):95–99. doi:10.1016/S1369-703X(02)00032-3

    Article  Google Scholar 

  44. Wu Y, Zhu Z, Mei L (1996) Interfacial tension of poly(ethylene glycol) plus salt plus water systems. J Chem Eng Data 41(5):1032–1035. doi:10.1021/je960044g

    Article  Google Scholar 

  45. Yang CG, Xu ZR, Wang JH (2010) Manipulation of droplets in microfluidic systems. Trac Trends Anal Chem 29(2):141–157. doi:10.1016/j.trac.2009.11.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Czech Science Foundation (grant no. 14-01781S) and Ministry of Education Youth and Sports of the Czech Republic: CENTEM PLUS (LO1402) for financial support of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michal Přibyl.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vobecká, L., Khafizova, E., Stragier, T. et al. Electric field driven addressing of ATPS droplets in microfluidic chips. Microfluid Nanofluid 21, 51 (2017). https://doi.org/10.1007/s10404-017-1891-x

Download citation

Keywords

  • Addressing
  • Aqueous two-phase systems
  • Electrophoresis
  • Microfluidics
  • Droplets