Kinetic boundary conditions for vapor–gas binary mixture

Abstract

Using molecular dynamics simulations, the present study investigated the precise characteristics of the binary mixture of condensable gas (vapor) and non-condensable gas (NC gas) molecules creating kinetic boundary conditions (KBCs) at a gas–liquid interface in equilibrium. We counted the molecules utilizing the improved two-boundary method proposed in previous studies by Kobayashi et al. (Heat Mass Trans 52:1851–1859, 2016. doi:10.1007/s00231-015-1700-6). In this study, we employed Ar for the vapor molecules, and Ne for the NC gas molecules. The present method allowed us to count easily the evaporating, condensing, degassing, dissolving, and reflecting molecules in order to investigate the detailed motion of the molecules, and also to evaluate the velocity distribution function of the KBCs at the interface. Our results showed that the evaporation and condensation coefficients for vapor and NC gas molecules decrease with the increase in the molar fraction of the NC gas molecules in the liquid. We also found that the KBCs can be specified as a function of the molar fraction and liquid temperature. Furthermore, we discussed the method to construct the KBCs of vapor and NC gas molecules.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Aoki K, Takata S, Kosuge S (1998) Vapor flows caused by evaporation and condensation on two parallel plane surfaces: effect of the presence of a noncondensable gas. Phys Fluids (1994–present) 10(6):1519

    Article  Google Scholar 

  2. Baidakov VG, Protsenko SP (2008) Molecular-dynamics investigation of phase equilibrium and surface tension in argon–neon system. J Phys Chem C 112(44):17231

    Article  Google Scholar 

  3. Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford

    Google Scholar 

  4. Frezzotti A (2011a) Non-equilibrium structure of the vapor–liquid interface of a binary fluid. In: AIP conference proceedings. American Institute of Physics

  5. Frezzotti A (2011b) Boundary conditions at the vapor–liquid interface. Phys Fluids (1994–present) 23(3):030609

    Article  MATH  Google Scholar 

  6. Gu K, Watkins CB, Koplik J (2010a) Molecular dynamics simulation of the equilibrium liquid–vapor interphase with solidification. Fluid Phase Equilib 297(1):77

    Article  Google Scholar 

  7. Gu K et al (2010) Multiscale molecular simulations of argon vapor condensation onto a cooled substrate with bulk flow. J Phys Fluids (1994–present) 22(11):112002

    Article  Google Scholar 

  8. Hansen JP, McDonald IR (1990) Theory of simple liquids. Elsevier, Amsterdam

    Google Scholar 

  9. Ishiyama T, Yano T, Fujikawa S (2004) Molecular dynamics study of kinetic boundary condition at an interface between argon vapor and its condensed phase. Phys Fluids (1994–present) 16(8):2899

    Article  MATH  Google Scholar 

  10. Kobayashi K, Hori K, Kon M, Sasaki K, Watanabe M (2016a) Molecular dynamics study on evaporation and reflection of monatomic molecules to construct kinetic boundary condition in vapor–liquid equilibria. Heat Mass Transf 52(9):1851. doi:10.1007/s00231-015-1700-6

    Article  Google Scholar 

  11. Kobayashi K, Sasaki K, Kon M, Fujii H, Watanabe M (2016b) Molecular dynamics simulation on kinetic boundary conditions of gas–vapor binary mixture In: AIP conference proceedings. American Institute of Physics

  12. Kon M, Kobayashi K, Watanabe M (2014) Method of determining kinetic boundary conditions in net evaporation/condensation. Phys Fluids (1994–present) 26(7):072003

    Article  Google Scholar 

  13. Kon M, Kobayashi K, Watanabe M (2016a) Liquid temperature dependence of kinetic boundary condition at vapor–liquid interface. Int J Heat Mass Transf 99:317

    Article  Google Scholar 

  14. Kon M, Kobayashi K, Watanabe M (2016b) Molecular simulation of evaporation mass flux during net evaporation/condensation. In: AIP conference proceedings. American Institute of Physics

  15. Kreider W, Crum LA, Bailey MR, Sapozhnikov OA (2011) A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound. J Acoust Soc Am 130(5):3511

    Article  Google Scholar 

  16. Kryukov AP, Levashov VY (2016) Boundary conditions on the vapor liquid interface at strong condensation. Heat Mass Transf 52(7):1393–1401

    Article  Google Scholar 

  17. Lee J, Laoui T, Karnik R (2014) Nanofluidic transport governed by the liquid/vapour interface. Nat Nanotechnol 9(4):317

    Article  Google Scholar 

  18. Lu Z, Narayanan S, Wang EN (2015) Modeling of evaporation from nanopores with nonequilibrium and nonlocal effects. Langmuir 31(36):9817

    Article  Google Scholar 

  19. Matsumoto Y, Takemura F (1994) Influence of internal phenomena on gas bubble motion. Effects of thermal diffusion, phase change on the gas–liquid interface and mass diffusion between vapor and noncondensable gas in the collapsing phase. JSME Int J Ser B 37(2):288

    Article  Google Scholar 

  20. Meland R, Frezzotti A, Ytrehus T, Hafskjold B (2004) Nonequilibrium molecular-dynamics simulation of net evaporation and net condensation, and evaluation of the gas-kinetic boundary condition at the interphase. Phys Fluids (1994–present) 16(2):223

    Article  MATH  Google Scholar 

  21. Streett W (1965) Liquid–vapor equilibrium in the system neon–argon. J Chem Phys 42(2):500

    Article  Google Scholar 

  22. Streett W (1967) Liquid–vapor phase behavior and liquid phase density in the system neon–argon at high pressures. J Chem Phys 46(9):3282

    Article  Google Scholar 

  23. Taguchi S, Aoki K, Takata S (2003) Vapor flows condensing at incidence onto a plane condensed phase in the presence of a noncondensable gas. I. Subsonic condensation. Phys Fluids (1994–present) 15(3):689

    Article  MATH  Google Scholar 

  24. Takata S, Yasuda S, Kosuge S, Aoki K (2003) Numerical analysis of thermal-slip and diffusion-slip flows of a binary mixture of hard-sphere molecular gases. Phys Fluids (1994–present) 15(12):3745

    Article  MATH  Google Scholar 

  25. Tsuruta T, Tanaka H, Masuoka T (1999) Condensation/evaporation coefficient and velocity distributions at liquid–vapor interface. Int J Heat Mass Transf 22(42):4107

    Article  MATH  Google Scholar 

  26. Tsuruta T, Tokunaga A, Nagayama G (2011) Molecular boundary conditions and accommodation coefficient on a nonequilibrium liquid surface. In: AIP conference proceedings. American Institute of Physics, vol 1333, p 859

  27. Wörner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12(6):841

    Article  Google Scholar 

  28. Xie JF, Sazhin SS, Cao BY (2012) Molecular dynamics study of condensation/evaporation and velocity distribution of n-dodecane at liquid–vapour phase equilibria. J Therm Sci Technol 7(1):288

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant No. 16K06064. Many people, especially Dr. H. Yaguchi (National institute of technology, gunma college), Mr. T. Yahagi, and Mr. K. Hori, have made valuable comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kazumichi Kobayashi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, K., Sasaki, K., Kon, M. et al. Kinetic boundary conditions for vapor–gas binary mixture. Microfluid Nanofluid 21, 53 (2017). https://doi.org/10.1007/s10404-017-1887-6

Download citation

Keywords

  • Kinetic boundary conditions
  • Evaporation and condensation
  • Binary mixture