Electrowetting of sessile drops on soft dielectric elastomer films

Abstract

The interconnection between the variation of elasticity of a dielectric film and the wetting of a sessile drop on the same, under an applied electrical voltage, remains unclear. Here, we report the electrowetting-on-dielectric behaviour of sessile drops on films of varying elasticities, fabricated using a dielectric elastomer. Our results reveal that the elasticity of the dielectric elastomer film indeed provides an additional control over the droplet electrowetting behaviour. The extent of electrowetting reduces with decreasing elasticity of the dielectric elastomer film. This influence of the variation of the dielectric film elasticity on droplet electrowetting is best understood from free energy-based consideration, leading to a test of the applicability of the classical Lippmann–Young model. We also provide a description of the displacement profiles for the deformation of a soft dielectric film surface, due to the interfacial electro-elastocapillary interaction triggered by the electrowetted sessile droplet. The understandings developed here can be of profound importance in various emerging applications, ranging from the development of soft liquid lenses to controlled drug delivery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Armani D, Liu C, Aluru N (1999) Re-configurable fluid circuits by PDMS elastomer micromachining. In: Micro electro mechanical systems (MEMS’99) IEEE international conference, pp 222–227

  2. Berthier J (2008) Microdrops and digital microfluidics. William Andrew, Norwich

    Google Scholar 

  3. Cammarata RC, Sieradzki K (1994) Surface and interface stresses. Annu Rev Mater Sci 24:215–234

    Article  Google Scholar 

  4. Carre A, Gastel JC, Shanahan MER (1996) Viscoelastic effects in the spreading of liquids. Nature 379(1):432–434

    Article  Google Scholar 

  5. Chen L, Bonaccurso E (2014) Electrowetting—from statics to dynamics. Adv Colloid Interface Sci 210:2–12

    Article  Google Scholar 

  6. Chen L, Auernhammer GK, Bonaccurso E (2011) Short time wetting dynamics on soft surfaces. Soft Matter 7(19):9084

    Article  Google Scholar 

  7. Choi K, Ng AHC, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem 5:413–440

    Article  Google Scholar 

  8. Dey R, Daga A, DasGupta S, Chakraborty S (2015) Dynamic electrowetting of sessile drops on soft surfaces. Appl Phys Lett 107:034101

    Article  Google Scholar 

  9. Gubbels F (2007) Silicones in the electronics industries. In: Inorganic polymers, an advanced research book. Nova Science Publishers

  10. Hong J, Lee SJ (2015) Detaching droplets in immiscible fluids from a solid substrate with the help of electrowetting. Lab Chip 15(3):900–907

    Article  Google Scholar 

  11. Jerison ER, Xu Y, Wilen LA, Dufresne ER (2011) Deformation of an elastic substrate by a three-phase contact line. Phys Rev Lett 106(18):186103

    Article  Google Scholar 

  12. Long D, Ajdari A, Leibler L (1996) Static and dynamic wetting properties of thin rubber films. Langmuir 12(21):5221–5230

    Article  Google Scholar 

  13. Lopes MC, Bonaccurso E (2012) Evaporation control of sessile water drops by soft viscoelastic surfaces. Soft Matter 8(30):7875

    Article  Google Scholar 

  14. Lopes MC, Bonaccurso E (2013) Influence of substrate elasticity on particle deposition patterns from evaporating water–silica suspension droplets. Soft Matter 9(33):7942

    Article  Google Scholar 

  15. Lubbers LA, Weijs JH, Botto L, Das S, Andreotti B, Snoeijer JH (2014) Drops on soft solids: free energy and double transition of contact angles. J Fluid Mech 747:R1

    Article  MathSciNet  Google Scholar 

  16. Magila TL, LeGrand DG (1970) Physical properties of block copolymers of polydimethyl siloxane and polycarbonate. Polym Eng Sci 10(6):349–357

    Article  Google Scholar 

  17. Marchand A, Das S, Snoeijer JH, Andreotti B (2012) Contact angles on a soft solid: from Young’s law to Neumann’s law. Phys Rev Lett 109(23):236101

    Article  Google Scholar 

  18. Mugele F (2009) Fundamental challenges in electrowetting: from equilibrium shapes to contact angle saturation and drop dynamics. Soft Matter 5(18):3377

    Article  Google Scholar 

  19. Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17(28):R705–R774

    Article  Google Scholar 

  20. Mugele F, Buehrle J (2007) Equilibrium drop surface profiles in electric fields. J Phys: Condens Matter 19(37):375112

    Google Scholar 

  21. Mugele F, Baret JC, Steinhauser D (2006) Microfluidic mixing through electrowetting-induced droplet oscillations. Appl Phys Lett 88:204106

    Article  Google Scholar 

  22. Paik PY, Pamula VK, Chakrabarty KA (2008) Digital-microfluidic approach to chip cooling. IEEE Des Test Comput 25(4):372–381

    Article  Google Scholar 

  23. Pericet-Camara R, Best A, Butt H-J, Bonaccurso E (2008) Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: an experimental investigation. Langmuir 24:10565

    Article  Google Scholar 

  24. Pericet-Camara R, Auernhammer GK, Koynov K, Lorenzoni S, Raiteri R, Bonaccurso E (2009) Solid-supported thin elastomer films deformed by microdrops. Soft Matter 5(19):3611

    Article  Google Scholar 

  25. Piñeirua M, Bico J, Roman B (2010) Capillary origami controlled by an electric field. Soft Matter 6:4491

    Article  Google Scholar 

  26. Shamai R, Andelman D, Berge B, Hayes R (2008) Water, electricity, and between… on electrowetting and its applications. Soft Matter 4(1):38

    Article  Google Scholar 

  27. Shanahan MER (1987) The influence of solid micro-deformation on contact angle equilibrium. J Phys D Appl Phys 20(7):945

    Article  Google Scholar 

  28. Style RW, Dufresne ER (2012) Static wetting on deformable substrates, from liquids to soft solids. Soft Matter 8:7177

    Article  Google Scholar 

  29. Style RW, Boltyanskiy R, Che Y, Wettlaufer JS, Wilen LA, Dufresne ER (2013) Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys Rev Lett 110(6):066103

    Article  Google Scholar 

  30. Xu Y, Engl WC, Jerison ER, Wallenstein KJ, Hyland C, Wilen LA, Dufresne ER (2010) Imaging in-plane and normal stresses near an interface crack using traction force microscopy. Proc Natl Acad Sci USA 107(34):14964–14967

    Article  Google Scholar 

  31. Yu Y, Zhao Y (2009) Elastic deformation of soft membrane with finite thickness induced by a sessile liquid droplet. J Colloid Interface Sci 339(2):489–494

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Indian Institute of Technology Kharagpur, India [Sanction Letter no.: IIT/SRIC/ATDC/CEM/2013-14/118, dated 19.12.2013].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Suman Chakraborty.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dey, R., DasGupta, S. & Chakraborty, S. Electrowetting of sessile drops on soft dielectric elastomer films. Microfluid Nanofluid 21, 48 (2017). https://doi.org/10.1007/s10404-017-1882-y

Download citation

Keywords

  • Electrowetting-on-dielectric (EWOD)
  • Droplets
  • Dielectric elastomer
  • Elasticity
  • Elastocapillarity
  • Electro-elastocapillarity
  • Soft surfaces
  • Wetting