Skip to main content
Log in

A scalable active micro-mixer for biomedical applications

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present a geometrically scalable active micro-mixer suitable for biomedical and bioengineering applications and potentially assimilable in a lab-on-chip. Our micro-mixer is able to process volumes of fluid in the range of 10−6–10−9 l; its actuation system induces fast mixing; its constructive simplicity facilitates its realizability, assimilability and reusability; it is geometrically scalable and, therefore, assimilable to microfluidic systems of different dimensions. We characterize the mixing performance of our micro-mixer in terms of Reynolds, Strouhal and Péclet numbers in order to establish a practical range of operating conditions for our micro-mixer. Finally, we demonstrate the geometrical scalability of our micro-mixer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alvarez MM, Muzzio FJ, Cerbelli S, Adrover A, Giona M (1998) Self-similar spatiotemporal structure of intermaterial boundaries in chaotic flows. Phys Rev Lett 81:3395–3398

    Article  Google Scholar 

  • Aref H (1984) Stirring by chaotic advection. J Fluid Mech 143:1–21

    Article  MATH  MathSciNet  Google Scholar 

  • Aref H (2002) The development of chaotic advection. Phys Fluids 14:13151325

    MathSciNet  Google Scholar 

  • Aref H, El Naschie MS (1995) Chaos applied to fluid mixing. Pergamon, New York

    MATH  Google Scholar 

  • Battersby BJ, Trau M (2002) Novel miniaturized systems in high-throughput screening. Trends Biotechnol 20:167–173

    Article  Google Scholar 

  • Bau HH, Zhong J, Yi M (2001) A minute magneto hydro dynamic (MHD) mixer. Sens Actuators B Chem 79:207–215

    Article  Google Scholar 

  • Bottausci F, Cardonne C, Meinhart C, Mezić I (2007) An ultrashort mixing length micromixer: the shear superposition micromixer. Lab Chip 7:396398

    Article  Google Scholar 

  • Burke BJ, Regnier FE (2003) Stopped-flow enzyme assays on a chip using a microfabricated mixer. Anal Chem 75:1786–1791

    Article  Google Scholar 

  • Burns MA, Johnson BN, Brahmasandra SN, Handique K, Webster JR, Krishnan M, Sammarco TS, Man PM, Jones D, Heldsinger D, Mastrangelo CH, Burke DT (1998) An integrated nanoliter DNA analysis device. Science 282:484–487

    Article  Google Scholar 

  • Chang Y-H, Lee G-B, Huang F-C, Chen Y-Y, Lin J-L (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevices 8:215–225

    Article  Google Scholar 

  • Chun H, Kim HC, Chung TD (2008) Ultrafast active mixer using polyelectrolytic ion extractor. Lab Chip Miniaturisat Chem Biol 8:764–771

    Article  Google Scholar 

  • Cortelezzi L, Adrover A, Giona M (2008) Feasibility, efficiency and transportability of short-horizon optimal mixing protocols. J Fluid Mech 597:199–231

    Article  MATH  MathSciNet  Google Scholar 

  • Cortelezzi L, Mezić I (eds) (2009) Analysis and control of mixing with an application to micro and macro flow processes, CISM courses and lectures, vol 510. Springer, New York

    Google Scholar 

  • Cubaud T, Mason TG (2009) High-viscosity fluid threads in weakly diffusive microfluidic systems. New J Phys 11:075029

    Article  Google Scholar 

  • Daito N, Aoki N, Yoshida J-I, Mae K (2006) Selective condensation reaction of phenols and hydroxybenzyl alcohol using micromixers based on collision of fluid segments. Ind Eng Chem Res 45:4954–4961

    Article  Google Scholar 

  • Deval J, Tabeling P, Ho C-M (2002) A dielectrophoretic chaotic mixer. In: Proceedings of the IEEE micro electro mechanical systems (MEMS), pp 36–39

  • Dittrich PS, Jahnz M, Schwille P (2005) A new embedded process for compartmentalized cell-free protein expression and on-line detection in microfluidic devices. ChemBioChem 6:811–814

    Article  Google Scholar 

  • Dunn DA, Feygin I (2000) Challenges and solutions to ultra-high-throughput screening assay miniaturization: submicroliter fluid handling. Drug Discov Today 5:S84–S91

    Article  Google Scholar 

  • El Moctar AO, Aubry N, Batton J (2003) Electro-hydrodynamic micro-fluidic mixer. Lab Chip 3:273–280

    Article  Google Scholar 

  • Garofalo F, Adrover A, Cerbelli S, Giona M (2010) Spectral characterization of static mixers. The S-shaped micromixer as a case study. AICHE J 56:318–335

    Google Scholar 

  • Glasgow I, Aubry N (2003) Enhancement of microfluidic mixing using time pulsing. Lab Chip Miniaturisat Chem Biol 3:114–120

    Article  Google Scholar 

  • Glasgow I, Lieber S, Aubry N (2004) Parameters influencing pulsed flow mixing in microchannels. Anal Chem 76:4825–4832

    Article  Google Scholar 

  • Gleeson JP (2005) Transient micromixing: examples of laminar and chaotic stirring. Phys Fluids 17:100614

    Article  MATH  MathSciNet  Google Scholar 

  • Gouillart E, Thiffeault J-L, Finn MD (2006) Topological mixing with ghost rods. Phys Rev E 73:036311

    Article  MathSciNet  Google Scholar 

  • Gubanov O, Cortelezzi L (2009) Sensitivity of mixing optimization to the geometry of the initial scalar field, analysis and control of mixing with an application to micro and macro flow processes, CISM courses and lectures, vol 510. Springer, New York

    Google Scholar 

  • Gubanov O, Cortelezzi L (2010) Towards the design of an optimal mixer. J Fluid Mech 651:27–53

    Article  MATH  Google Scholar 

  • Gubanov O, Cortelezzi L (2011) On the cost efficiency of mixing optimization. J Fluid Mech 692:112–136

    Article  MATH  MathSciNet  Google Scholar 

  • Hardt S, Pennemann H, Schönfeld F (2006) Theoretical and experimental characterization of a low-Reynolds number split-and-recombine mixer. Microfluid Nanofluidics 2:237–248

    Article  Google Scholar 

  • Hessel V, Lwe H (2005) Organic synthesis with microstructured reactors. Chem Eng Technol 28:267–284

    Article  Google Scholar 

  • Hsu C-H, Folch A (2006) Spatio-temporally-complex concentration profiles using a tunable chaotic micromixer. Appl Phys Lett 89:144102

    Article  Google Scholar 

  • Ismagilov RF, Stroock AD, Kenis PJA, Whitesides G, Stone HA (2000) Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett 76:2376–2378

    Article  Google Scholar 

  • Johnson TJ, Ross D, Locascio LE (2002) Rapid microfluidic mixing. Anal Chem 74:45–51

    Article  Google Scholar 

  • Kim DS, Lee SW, Kwon TH, Lee SS (2004) A barrier embedded chaotic micromixer. J Micromech Microeng 14:798–805

    Article  Google Scholar 

  • Lipman EA, Schuler B, Bakajin O, Eaton WA (2003) Single-molecule measurement of protein folding kinetics. Science 301:1233–1235

    Article  Google Scholar 

  • Lu H, Schmidt MA, Jensen KF (2005) A microfluidic electroporation device for cell lysis. Lab Chip 5:23–29

    Article  Google Scholar 

  • Mao H, Yang T, Cremer PS (2002) A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements. J Am Chem Soc 124:4432–4435

    Article  Google Scholar 

  • Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182

    Article  Google Scholar 

  • Min J, Kim JH, Kim S (2004) Microfluidic device for bio analytical systems. Biotechnol Bioprocess Eng 9:100–106

    Article  Google Scholar 

  • Müller SD, Mezić I, Walther JH, Koumoutsakos P (2004) Transverse momentum micromixer optimization with evolution strategies. Comput Fluids 33:521–531

    Article  MATH  Google Scholar 

  • Nguyen N-T, Wu Z (2005) Micromixers a review. J Micromech Microeng 15:R1–R16

    Article  Google Scholar 

  • Nie Z, Xu S, Seo M, Lewis PC, Kumacheva E (2005) Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J Am Chem Soc 127:8058–8063

    Article  Google Scholar 

  • Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73:5822–5832

    Article  Google Scholar 

  • Ottino JM (1989) The kinematics of mixing: stretching, chaos, and transport. Cambridge University Press, New York

    MATH  Google Scholar 

  • Ottino JM, Wiggins S (2004) Designing optimal micromixers. Science 305:485–486

    Article  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing/Taylor & Francis, New York

    MATH  Google Scholar 

  • Pennemann H, Hessel V, Kost H-J, Lwe H, de Bellefon C (2004) Investigations on pulse broadening for catalyst screening in gas/liquid systems. AlChE J 50:1814–1823

    Article  Google Scholar 

  • Phelps JH, Tucker CL (2006) Lagrangian particle calculations of distributive mixing: limitations and applications. Chem Eng Sci 61:68266836

    Article  Google Scholar 

  • Ravi Kumar DV, Prasad BLV, Kulkarni AA (2012) Segmented flow synthesis of Ag nanoparticles in spiral microreactor: role of continuous and dispersed phase. Chem Eng J 192:357–368

    Article  Google Scholar 

  • Roder H, Wuthrich K (1986) Protein folding kinetics by combined use of rapid mixing techniques and NMR observation, proteins: structure. Funct Genet 1:34–42

    Article  Google Scholar 

  • Stahl M, Aslund BL, Rasmuson AC (2001) Reaction crystallization kinetics of benzoic acid. AlChE J 47:1544–1560

    Article  Google Scholar 

  • Stroock AD, Dertinger SKW, Ajdari A, Mezi I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651

    Article  Google Scholar 

  • Sturman R, Ottino JM, Wiggins S (2006) The mathematical foundations of mixing: the linked twist map as a paradigm in applications: micro to macro, fluids to solids. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Sun C-L, Sie J-Y (2010) Active mixing in diverging microchannels. Microfluid Nanofluidics 8:485–495

    Article  Google Scholar 

  • Sundberg SA (2000) High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr Opin Biotechnol 11:47–53

    Article  Google Scholar 

  • Szalai ES, Kukura J, Arratia PE, Muzzio FJ (2003) Effect of hydrodynamics on reactive mixing in laminar flows. AIChE J 49:168179

    Google Scholar 

  • Tseng W-K, Lin J-L, Sung W-C, Chen S-H, Lee GB (2006) Active micromixers using surface acoustic waves on Y-cut 128 LiNbO3. J Micromech Microeng 16:539–548

    Article  Google Scholar 

  • Vikhansky A, Cox SM (2007) Conditional moment closure for chemical reactions in laminar chaotic flows. AIChE J 53:1927

    Article  Google Scholar 

  • Whitesides G (2010) Solving problems. Lab Chip 10:2317–2318

    Article  Google Scholar 

  • Yang J-T, Lin K-W (2006) Mixing and separation of two-fluid flow in a micro planar serpentine channel. J Micromech Microeng 16:2439–2448

    Article  Google Scholar 

  • Yun K-S, Yoon E (2004) Microfluidic components and bio-reactors for miniaturized bio-chip applications. Biotechnol Bioprocess Eng 9:86–92

    Article  Google Scholar 

  • Zalc JM, Muzzio FJ (1999) Parallelcompetitive reactions in a two-dimensional chaotic flow. Chem Eng Sci 54:10531069

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, S. F., thanks Dr. Chiara Corsini, Dr. Claudio Chiastra and Dr. Elena Bianchi for their kind guidance in developing the numerical model using ICEM and Ansys Fluent 14 (Ansys, Canonsburg, PA, USA) and their support in running the numerical simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Cortelezzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortelezzi, L., Ferrari, S. & Dubini, G. A scalable active micro-mixer for biomedical applications. Microfluid Nanofluid 21, 31 (2017). https://doi.org/10.1007/s10404-017-1868-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1868-9

Keywords

Navigation