A high flow rate thermal bubble-driven micropump with induction heating

  • Bendong LiuEmail author
  • Jianchuang Sun
  • Desheng Li
  • Jiang Zhe
  • Kwang W. Oh
Research Paper


A thermal bubble-driven micropump with magnetic induction heating is successfully demonstrated in this paper. Energy is transferred from the planar coil outside the microchamber to the metal heating plate inside the microchamber through the electromagnetic field, and Joule heat is induced by the eddy current in the heating plate. Sequential photographs of bubble nucleation, growth and shrink in open environment were recorded by a CCD camera. One advantage of the micropump is that there is no physical contact between the heating plate and the external power supply circuit, which resulted in an easy fabrication process. What’s more, compared with other thermal bubble-driven micropump with resistive microheater, the flow rate and the pump stroke have been improved significantly due to its larger dimension of the heating plate and larger bubbles volume. The experiments show that the maximum flow rate of this micropump is about 102.05 μL/min, which can expand the potential applications, especially for microfluidic system that requires higher flow rate.


Bubble Micropump Microfluidics Phase change Induction heating 



This work was partially supported by the China Scholarship Council and National Natural Science Foundation of China (No. 51105011).

Supplementary material

Supplementary material 1 (WMV 2439 kb)

Supplementary material 2 (WMV 2702 kb)


  1. Berg AVD, Bergveld P (2006) Labs-on-a-chip: origin, highlights and future perspectives. Lab Chip 6:1266–1273CrossRefGoogle Scholar
  2. Bule CR, Kim D, Lister S, Santiago JG (2007) An electro-osmotic fuel pump for direct methanol fuel cells. Electrochem Solid-State Lett 10:196–200Google Scholar
  3. Cheng HP, Chien CP (2006) Ejection interaction of two adjacent micropumps. J Fluids Eng 128:742–750CrossRefGoogle Scholar
  4. Cooney CG, Towe BC (2004) A thermopneumatic dispensing micropump. Sens Actuators A 116:519–524CrossRefGoogle Scholar
  5. Fadl A, Demming S, Zhang Z, Stephanus B, Mannfred K, Donna ML (2010) A multifunction and bidirectional valve-less rectification micropump based on bifurcation geometry. Microfluid Nanofluid 9:267–280CrossRefGoogle Scholar
  6. Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5:145–174CrossRefGoogle Scholar
  7. Jun DH, Sim WY, Yang SS (2007) A novel constant delivery thermopneumatic micropump using surface tensions. Sens Actuators A 139:210–215CrossRefGoogle Scholar
  8. Jung JY, Kwak HY (2007) Fabrication and testing of bubble powered micropumps using embedded microheater. Microfluid Nanofluid 3:161–169CrossRefGoogle Scholar
  9. Kan JW, Yang ZG, Peng TJ, Cheng GM, Wu BD (2005) Design and test of a high-performance piezoelectric micropump for drug delivery. Sens Actuators A 121:156–161CrossRefGoogle Scholar
  10. Kim JH, Kang CJ, Kim YS (2004) A disposable polydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc. Microelectron Eng 71:119–124CrossRefGoogle Scholar
  11. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64CrossRefGoogle Scholar
  12. Lee DE, Chen HP, Soper SA, Wang WJ (2003) An electrochemical micropump and its application in a DNA mixing and analysis system. Proc SPIE 4982:264–271CrossRefGoogle Scholar
  13. Lemmens RJ, Meng DD (2011) A comparative study on bubble-driven micropumping in microchannels with square and circular cross sections. Sens Actuators A 169:164–170CrossRefGoogle Scholar
  14. Liu B, Hou Y, Sun J, Yang J (2016) Study on the effect of heating plate thickness on the micro induction heater for thermal bubbles generation. Microsyst Technol 22:1005–1011CrossRefGoogle Scholar
  15. Machauf A, Nemirovsky Y, Dinnar U (2005) A membrane micropump electrostatically actuated across the working fluid. J Micromech Microeng 15:2309–2316CrossRefGoogle Scholar
  16. Maxwell RB, Gerhardt AL, Toner M, Gray M, Schmidt MA (2003) A microbubble-powered bioparticle actuator. J Microelectromech Syst 12:630–640CrossRefGoogle Scholar
  17. Nguyen B, Kassegne SK (2008) High-current density DC magenetohydrodynamics micropump with bubble isolation and release system. Microfluid Nanofluid 5:383–393CrossRefGoogle Scholar
  18. Nguyen NT, Truong TQ (2004) A fully polymeric micropump with piezoelectric actuator. Sens Actuators B 97:137–143CrossRefGoogle Scholar
  19. Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B 130:917–942CrossRefGoogle Scholar
  20. Osman OO, Shirai A, Kawano S (2015) A numerical study on the performance of micro-vibrating flow pumps using the immersed boundary method. Microfluid Nanofluid 19:595–608CrossRefGoogle Scholar
  21. Seibel K, Scholer L, Schafer H, Bohm M (2008) A programmable planar electroosmotic micropump for lab-on-a-chip applications. J Micromech Microeng 18:1–7CrossRefGoogle Scholar
  22. Sim WY, Yoon HJ, Jeong OC, Yang SS (2003) A phase-change type micropump with aluminum flap valves. J Micromech Microeng 13:286–294CrossRefGoogle Scholar
  23. Teymoori MM, Abbaspour SE (2005) Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens Actuators A 117:222–229CrossRefGoogle Scholar
  24. Tsai JH, Lin L (2002) A thermal-bubble-actuated micronozzle-diffuser pump. J Microelectromech Syst 11:665–671CrossRefGoogle Scholar
  25. Yin Z, Prosperetti A (2005) ‘Blinking bubble’ micropump with microfabricated heaters. J Micromech Microeng 15:1683–1691CrossRefGoogle Scholar
  26. Yokoyama Y, Takeda M, Umemoto T, Ogushi T (2004) Thermal micro pump for a loop-type micro channel[J]. Sens Actuators A 111:123–128CrossRefGoogle Scholar
  27. Zeng SL, Chen CH, Mikkelsen JC, Santiago JG (2001) Fabrication and characterization of electoosmotic micropumps. Sens Actuators B 79:107–114CrossRefGoogle Scholar
  28. Zhang K, Jian A, Zhang X, Wang Y, Li Z, Tam H (2011) Laser-induced thermal bubbles for microfluidic applications. Lab Chip 11:1389–1395CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Bendong Liu
    • 1
    Email author
  • Jianchuang Sun
    • 1
  • Desheng Li
    • 1
  • Jiang Zhe
    • 1
  • Kwang W. Oh
    • 2
  1. 1.College of Mechanical Engineering and Applied Electronics TechnologyBeijing University of TechnologyBeijingChina
  2. 2.SMALL (Sensors and Micro Actuators Learning Laboratory), Department of Electrical EngineeringState University of New York at BuffaloBuffaloUSA

Personalised recommendations