Skip to main content
Log in

Dissipative particle dynamics simulation of shear flow in a microchannel with a deformable membrane

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Thin deformable membranes are encountered in a number of microfluidics-based applications. These are often employed for enhancing sorting, mixing, cross-diffusion transport, etc. Microfluidic systems with deformable membranes can be better understood by employing simple models and efficient computational procedures. In this paper, we present a dissipative particle dynamics model to simulate the interaction between a deformable membrane and fluid flow in a two-dimensional microchannel. The membrane is modeled as a bead-spring system with both extensional and torsional springs to simulate extensional stiffness and bending rigidity, respectively. By performing detailed simulations on a membrane pinned at both ends and oriented parallel to the flow, we observe different steady state conformations. These membrane deflections are found to be relatively large for low bending stiffnesses and small for high stiffnesses. The membrane was found to exhibit a simple bowing out mode for high stiffness values and more complex conformations at lower stiffnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bertram CD (2008) Flow-induced oscillation of collapsed tubes and airway structures. Respir Physiol Neurobiol 163:256–265

    Article  Google Scholar 

  • Chakraborty D, Prakash JR, Friend J, Yeo L (2012) Fluid-structure interaction in deformable microchannels. Phys Fluids 24(102002):1–21

    Google Scholar 

  • Charcosset C (2006) Membrane processes in biotechnology: an overview. Biotechnol Adv 24:482–492

    Article  Google Scholar 

  • Fan X, Phan-Thien N, Yong NT, Wu X, Xu D (2003) Microchannel flow of a macromolecular suspension. Phys Fluids 15:11–21

    Article  MATH  Google Scholar 

  • Goetz R, Lipowsky R (1998) Computer simulations of bilayer membranes: self-assembly and interfacial tension. J Chem Phys 108:7397–7409

    Article  Google Scholar 

  • Groot R, Warren P (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423–4435

    Article  Google Scholar 

  • Heil M, Hazel AL (2011) Fluid-structure interaction in internal physiological flows. Annu Rev Fluid Mech 43(1):141–162

    Article  MathSciNet  MATH  Google Scholar 

  • Heil M, Jensen OE (2003) Flows in deformable tubes and channels. Theoretical models and biological applications in flow past highly compliant boundaries and in collapsible tubes:15–50

  • Hoogerbrugge PG, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155–160

    Article  Google Scholar 

  • Huang L (2001) Viscous flutter of a finite elastic membrane in poiseuille flow. J Fluids Struct 15:1061–1088

    Article  Google Scholar 

  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    Article  Google Scholar 

  • Irving JH, Kirkwood JG (1950) The statistical mechanics of transport processes. IV. The equation of hydrodynamics. J Chem Phys 18:817

    Article  MathSciNet  Google Scholar 

  • Jensen OE (1990) Instabilities of flow in a collapsed tube. J Fluid Mech 220:623–659

    Article  MathSciNet  MATH  Google Scholar 

  • Kamm RD, Shapiro AH (1979) Unsteady flow in a collapsible tube subjected to external pressure or body forces. J Fluid Mech 95:1–78

    Article  MATH  Google Scholar 

  • Karniadakis GE, Beskok A (2002) Micro flows: fundamentals and simulation. Springer, New York

    MATH  Google Scholar 

  • Krindel P, Silberberg A (1979) Flow through gel-walled tubes. J Colloid Interface Sci 71:39–50

    Article  Google Scholar 

  • Kumar A, Asaka Y, Nada EA, Manfred K, Faghri M (2009) From dissipative particle dynamics scales to physical scales: a course-graining study for water flow in micro channel. Microfluid-Nanofluid 7:467–477

    Article  Google Scholar 

  • Le DV, White J, Peraire J, Lim KM, Khoo BC (2009) An implicit immersed boundary method for three-dimensional fluid-membrane interactions. J Comput Phys 228:8427–8445

    Article  MathSciNet  MATH  Google Scholar 

  • Liang SJ, Neitzeli GP, Aidun CK (1997) Finite element computations for unsteady fluid and elastic membrane interaction problems. Int J Numer Meth Fluids 24:1091–1110

    Article  MATH  Google Scholar 

  • Lipowsky R (1992) The physics of flexible membranes. Adv Solid State Phys 32:19–34

    Article  Google Scholar 

  • Luo XY, Pedley TJ (1996) A numerical simulation of unsteady flow in a 2-D collapsible channel. J Fluid Mech 314:191–225

    Article  MATH  Google Scholar 

  • Moeendarbary E, Ng TY, Zangeneh M (2009) Dissipative particle dynamics: introduction, methodology and complex fluid applications-a review. Int J of Appl Mech 1(4):737–763

    Article  Google Scholar 

  • Newman BG, Paidoussis MP (1991) The stability of two-dimensional membranes in streaming flow. J Fluids Struct 5:443–454

    Article  Google Scholar 

  • Noguchi H (2009) Membrane simulation models from nanometer to micrometer scale. J Phys Soc Jpn 78:041007

    Article  Google Scholar 

  • Paidoussis MP (2002) Fluid-structure interactions. Elsevier, Amsterdam

    Google Scholar 

  • Pan W, Pivkin IV, Karniadakis GE (2008) Single-particle hydrodynamics in DPD: a new formulation. Europhys Lett 84:10012-p1–10012-p6

    Article  MathSciNet  Google Scholar 

  • Pan W, Caswell B, Karniadakis GE (2010) A low-dimensional model for the red blood cell. Soft Matter 6(18):4366–4376. doi:10.1039/C0SM00183J

    Article  Google Scholar 

  • Pan W, Fedosov DA, Karniadakis GE, Caswell B (2008) Hydrodynamic interactions for single dissipative-particle-dynamics particles and their clusters and filaments. Phys Rev E 78(4):046706

    Article  MathSciNet  Google Scholar 

  • Pedley TJ, Luo XY (1998) Modelling flow and oscillations in collapsible tubes. Theor Computat Fluid Dyn 10:277–294

    Article  MATH  Google Scholar 

  • Ranjith SK, Patnaik BSV, Vedantam S (2013a) No-slip boundary condition in finite-size dissipative particle dynamics. J Comput Phys 232:174–188

    Article  MathSciNet  Google Scholar 

  • Ranjith SK, Patnaik BSV, Vedantam S (2013b) Hydrodynamics of the developing region in hydrophobic microchannels: a dissipative particle dynamics study. Phy Rev E 87(3):033303

    Article  Google Scholar 

  • Ranjith SK, Vedantam S, Patnaik BSV (2014a) Hydrodynamics of flow through microchannels with hydrophobic strips. Microfluid-Nanofluid 19:547–556

    Article  Google Scholar 

  • Ranjith SK, Patnaik BSV, Vedantam S (2014b) Transport of DNA in hydrophobic microchannels: a dissipative particle dynamics simulation. Soft Matter 10:4184–4191

    Article  Google Scholar 

  • Sajeesh P, Sen AK (2013) Particle separation and sorting in microfluidic devices: a review. Microfluid-Nanofluid 17:1–52

    Article  Google Scholar 

  • Shelley MJ, Zhang J (2010) Flapping and bending bodies interacting with fluid flows. Annu Rev Fluid Mech 43(1):449–465

    Article  MathSciNet  MATH  Google Scholar 

  • Sygulski R (2007) Stability of membrane in low subsonic flow. Int J Nonlinear Mech 42:196–202

    Article  MATH  Google Scholar 

  • Thaokar RM, Kumaran V (2002) Stability of fluid flow past a membrane. J Fluid Mech 472:29–50

    Article  MathSciNet  MATH  Google Scholar 

  • Whitesides G (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. V. Patnaik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, D.V., Vedantam, S. & Patnaik, B.S.V. Dissipative particle dynamics simulation of shear flow in a microchannel with a deformable membrane. Microfluid Nanofluid 20, 161 (2016). https://doi.org/10.1007/s10404-016-1819-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1819-x

Keywords

Navigation