Advertisement

Flow-rate-insensitive deterministic particle sorting using a combination of travelling and standing surface acoustic waves

  • Jia Wei Ng
  • David J. Collins
  • Citsabehsan Devendran
  • Ye Ai
  • Adrian Neild
Research Paper

Abstract

Manipulation of cells by acoustic forces in a continuous flow offers a means to sort on the basis of physical properties in a contactless, label-free and biocompatible manner. Many acoustic sorting systems rely on either standing waves or travelling waves alone and require specific exposure times to the acoustic field, fine-tuned by manipulating the bulk flow rate. In this work, we demonstrate a flow-rate-insensitive device for continuous particle sorting by employing a pressure field that utilises both travelling and standing acoustic wave components, whose non-uniform spatial distribution arises from the attenuation of a leaky surface acoustic wave. We show that in parts of the pressure field in which the travelling wave component dominates, particles migrate across multiple wavelengths. In doing so, they drift into areas of standing wave dominance, whereby particles are confined within their respective nodal positions. It is demonstrated that this final confinement location is dependent on the particle size and independent of the force field exposure time and thus the flow rate, permitting the continuous separation of 5.1-, 6.1- and 7.0-µm particles. Omitting the need to precisely control the bulk flow rate potentially enables sorting in systems in which flow is not driven by external pumps.

Keywords

Particle sorting Microfluidics Lab on a chip Acoustofluidics Surface acoustic wave (SAW) Standing wave Travelling waves Acoustic radiation force 

Notes

Acknowledgments

We gratefully acknowledge support received from the Australian Research Council, Grant No. DP160101263. This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF). This research was undertaken with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government.

References

  1. Behrens J, Langelier S, Rezk AR, Lindner G, Yeo LY, Friend JR (2015) Microscale anechoic architecture: acoustic diffusers for ultra low power microparticle separation via traveling surface acoustic waves. Lab Chip 15(1):43–46. doi: 10.1039/C4LC00704B CrossRefGoogle Scholar
  2. Bruus H (2008) Theoretical microfluidics. OUP, OxfordGoogle Scholar
  3. Campbell JJ, Jones WR (1968) A method for estimating optimal crystal cuts and propagation directions for excitation of piezoelectric surface waves. Sonics and ultrasonics. IEEE Trans 15(4):209–217. doi: 10.1109/T-SU.1968.29477 CrossRefGoogle Scholar
  4. Carr C, Espy M, Nath P, Martin SL, Ward MD, Martin J (2009) Design, fabrication and demonstration of a magnetophoresis chamber with 25 output fractions. J Magn Magn Mater 321(10):1440–1445. doi: 10.1016/j.jmmm.2009.02.064 CrossRefGoogle Scholar
  5. Collins DJ, Alan T, Helmerson K, Neild A (2013) Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation. Lab Chip 13(16):3225–3231CrossRefGoogle Scholar
  6. Collins DJ, Alan T, Neild A (2014a) Particle separation using virtual deterministic lateral displacement (vDLD). Lab Chip 14(9):1595–1603. doi: 10.1039/c3lc51367j CrossRefGoogle Scholar
  7. Collins DJ, Alan T, Neild A (2014b) The particle valve: on-demand particle trapping, filtering, and release from a microfabricated polydimethylsiloxane membrane using surface acoustic waves. Appl Phys Lett 105(3):033509. doi: 10.1063/1.4891424 CrossRefGoogle Scholar
  8. Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A (2015) Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 6:8686. doi: 10.1038/ncomms9686 CrossRefGoogle Scholar
  9. Collins DJ, Neild A, Ai Y (2016) Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting. Lab Chip 16(3):471–479. doi: 10.1039/c5lc01335f CrossRefGoogle Scholar
  10. Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60(4):641–696Google Scholar
  11. Dentry MB, Yeo LY, Friend JR (2014) Frequency effects on the scale and behavior of acoustic streaming. Phys Rev E: Stat, Nonlinear, Soft Matter Phys 89(1):013203. doi: 10.1103/PhysRevE.89.013203 CrossRefGoogle Scholar
  12. Destgeer G, Lee KH, Jung JH, Alazzam A, Sung HJ (2013) Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW). Lab Chip 13(21):4210–4216. doi: 10.1039/c3lc50451d CrossRefGoogle Scholar
  13. Destgeer G, Ha BH, Jung JH, Sung HJ (2014) Submicron separation of microspheres via travelling surface acoustic waves. Lab Chip 14(24):4665–4672. doi: 10.1039/c4lc00868e CrossRefGoogle Scholar
  14. Destgeer G, Ha BH, Park J, Jung JH, Alazzam A, Sung HJ (2015) Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves. Anal Chem 87(9):4627–4632. doi: 10.1021/acs.analchem.5b00525 CrossRefGoogle Scholar
  15. Devendran C, Gralinski I, Neild A (2014) Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel. Microfluid Nanofluid 17(5):879–890. doi: 10.1007/s10404-014-1380-4 CrossRefGoogle Scholar
  16. Devendran C, Albrecht T, Brenker J, Alan T, Neild A (2016a) The importance of travelling wave components in standing surface acoustic wave (SSAW) systems. Lab Chip 16:3756–3766. doi: 10.1039/C6LC00798H CrossRefGoogle Scholar
  17. Devendran C, Gunasekara NR, Collins DJ, Neild A (2016b) Batch process particle separation using surface acoustic waves (SAW): integration of travelling and standing SAW. RSC Adv 6(7):5856–5864. doi: 10.1039/c5ra26965b CrossRefGoogle Scholar
  18. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046. doi: 10.1039/b912547g CrossRefGoogle Scholar
  19. Ding X, Lin SC, Lapsley MI, Li S, Guo X, Chan CY, Chiang IK, Wang L, McCoy JP, Huang TJ (2012) Standing surface acoustic wave (SSAW) based multichannel cell sorting. Lab Chip 12(21):4228–4231. doi: 10.1039/c2lc40751e CrossRefGoogle Scholar
  20. Dual J, Hahn P, Leibacher I, Moller D, Schwarz T, Wang J (2012) Acoustofluidics 19: ultrasonic microrobotics in cavities: devices and numerical simulation. Lab Chip 12(20):4010–4021. doi: 10.1039/c2lc40733g CrossRefGoogle Scholar
  21. Franke T, Braunmuller S, Schmid L, Wixforth A, Weitz DA (2010) Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10(6):789–794. doi: 10.1039/b915522h CrossRefGoogle Scholar
  22. Friend J, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83(2):647–704. doi: 10.1103/RevModPhys.83.647 CrossRefGoogle Scholar
  23. Gascoyne PRC, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23(13):1973–1983. doi: 10.1002/1522-2683(200207)23:13<1973:aid-elps1973>3.0.co;2-1 CrossRefGoogle Scholar
  24. Glynne-Jones P, Demore CE, Ye C, Qiu Y, Cochran S, Hill M (2012) Array-controlled ultrasonic manipulation of particles in planar acoustic resonator. IEEE Trans Ultrason Ferroelectr Freq Control 59(6):1258–1266. doi: 10.1109/TUFFC.2012.2316 CrossRefGoogle Scholar
  25. Hasegawa T, Yosioka K (1975) Acoustic radiation force on fused silica spheres, and intensity determination. J Acoust Soc Am 58(3):581–585. doi: 10.1121/1.380708 CrossRefGoogle Scholar
  26. Hitzbleck M, Lovchik RD, Delamarche E (2013) Flock-based microfluidics. Adv Mater 25(19):2672–2676. doi: 10.1002/adma.201204854 CrossRefGoogle Scholar
  27. Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990CrossRefGoogle Scholar
  28. Johansson L, Nikolajeff F, Johansson S, Thorslund S (2009) On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal Chem 81(13):5188–5196CrossRefGoogle Scholar
  29. Kim U, Qian J, Kenrick SA, Daugherty PS, Soh HT (2008) Multitarget dielectrophoresis activated cell sorter. Anal Chem 80(22):8656–8661. doi: 10.1021/ac8015938 CrossRefGoogle Scholar
  30. Lei H, Zhang Y, Li B (2012) Particle separation in fluidic flow by optical fiber. Opt Express 20(2):1292–1300. doi: 10.1364/OE.20.001292 MathSciNetCrossRefGoogle Scholar
  31. Leibacher I, Schatzer S, Dual J (2014) Impedance matched channel walls in acoustofluidic systems. Lab Chip 14(3):463–470. doi: 10.1039/c3lc51109j CrossRefGoogle Scholar
  32. Leibacher I, Reichert P, Dual J (2015) Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis. Lab Chip 15(13):2896–2905. doi: 10.1039/c5lc00083a CrossRefGoogle Scholar
  33. Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39(3):1203–1217. doi: 10.1039/b915999c CrossRefGoogle Scholar
  34. Li P, Mao Z, Peng Z, Zhou L, Chen Y, Huang P-H, Truica CI, Drabick JJ, El-Deiry WS, Dao M, Suresh S, Huang TJ (2015) Acoustic separation of circulating tumor cells. Proc Natl Acad Sci 112(16):4970–4975. doi: 10.1073/pnas.1504484112 CrossRefGoogle Scholar
  35. Loutherback K, Chou KS, Newman J, Puchalla J, Austin RH, Sturm JC (2010) Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid Nanofluid 9(6):1143–1149. doi: 10.1007/s10404-010-0635-y CrossRefGoogle Scholar
  36. MacDonald MP, Spalding GC, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426(6965):421–424CrossRefGoogle Scholar
  37. McGrath J, Jimenez M, Bridle H (2014) Deterministic lateral displacement for particle separation: a review. Lab Chip 14(21):4139–4158. doi: 10.1039/c4lc00939h CrossRefGoogle Scholar
  38. Miansari M, Qi A, Yeo LY, Friend JR (2015) Vibration-induced deagglomeration and shear-induced alignment of carbon nanotubes in air. Adv Funct Mater 25(7):1014–1023. doi: 10.1002/adfm.201402976 CrossRefGoogle Scholar
  39. Morijiri T, Sunahiro S, Senaha M, Yamada M, Seki M (2011) Sedimentation pinched-flow fractionation for size- and density-based particle sorting in microchannels. Microfluid Nanofluid 11(1):105–110. doi: 10.1007/s10404-011-0785-6 CrossRefGoogle Scholar
  40. Morton KJ, Loutherback K, Inglis DW, Tsui OK, Sturm JC, Chou SY, Austin RH (2008) Hydrodynamic metamaterials: microfabricated arrays to steer, refract, and focus streams of biomaterials. Proc Natl Acad Sci USA 105(21):7434–7438. doi: 10.1073/pnas.0712398105 CrossRefGoogle Scholar
  41. Neild A, Oberti S, Dual J (2007) Design, modeling and characterization of microfluidic devices for ultrasonic manipulation. Sens Actuato B Chem 121(2):452–461. doi: 10.1016/j.snb.2006.04.065 CrossRefGoogle Scholar
  42. Park S, Zhang Y, Wang TH, Yang S (2011) Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip 11(17):2893–2900. doi: 10.1039/c1lc20307j CrossRefGoogle Scholar
  43. Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T (2005) Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip 5(1):20–22. doi: 10.1039/b405748c CrossRefGoogle Scholar
  44. Riera-Franco de Sarabia E, Gallego-Juárez JA, Rodríguez-Corral G, Elvira-Segura L, González-Gómez I (2000) Application of high-power ultrasound to enhance fluid/solid particle separation processes. Ultrasonics 38(1–8):642–646. doi: 10.1016/s0041-624x(99)00129-8 CrossRefGoogle Scholar
  45. Sajeesh P, Sen AK (2013) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17(1):1–52. doi: 10.1007/s10404-013-1291-9 CrossRefGoogle Scholar
  46. Schmid L, Weitz DA, Franke T (2014) Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14(19):3710–3718. doi: 10.1039/c4lc00588k CrossRefGoogle Scholar
  47. Sesen M, Alan T, Neild A (2014) Microfluidic on-demand droplet merging using surface acoustic waves. Lab Chip 14(17):3325–3333. doi: 10.1039/c4lc00456f CrossRefGoogle Scholar
  48. Shi J, Huang H, Stratton Z, Huang Y, Huang TJ (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9(23):3354–3359. doi: 10.1039/b915113c CrossRefGoogle Scholar
  49. Shields CW, Reyes CD, Lopez GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5):1230–1249. doi: 10.1039/c4lc01246a CrossRefGoogle Scholar
  50. Shiokawa S, Matsui Y, Ueda T (1989) Liquid streaming and droplet formation caused by leaky Rayleigh waves. In: Ultrasonics symposium, 1989. Proceedings., IEEE 1989, 3–6 Oct 1989, vol 641, pp 643–646. doi: 10.1109/ULTSYM.1989.67063
  51. Sivanantha N, Ma C, Collins DJ, Sesen M, Brenker J, Coppel RL, Neild A, Alan T (2014) Characterization of adhesive properties of red blood cells using surface acoustic wave induced flows for rapid diagnostics. Appl Phys Lett 105(10):103704. doi: 10.1063/1.4895472 CrossRefGoogle Scholar
  52. Skowronek V, Rambach RW, Schmid L, Haase K, Franke T (2013) Particle deflection in a poly(dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence. Anal Chem 85(20):9955–9959. doi: 10.1021/ac402607p CrossRefGoogle Scholar
  53. Tartaj P, del Puerto Morales M, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182CrossRefGoogle Scholar
  54. Wang Y, Zhao Y, Cho SK (2007) Efficient in-droplet separation of magnetic particles for digital microfluidics. J Micromech Microeng 17(10):2148CrossRefGoogle Scholar
  55. Wei Hou H, Gan HY, Bhagat AA, Li LD, Lim CT, Han J (2012) A microfluidics approach towards high-throughput pathogen removal from blood using margination. Biomicrofluidics 6(2):24115–2411513. doi: 10.1063/1.4710992 CrossRefGoogle Scholar
  56. Wiklund M, Gunther C, Lemor R, Jager M, Fuhr G, Hertz HM (2006) Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Lab Chip 6(12):1537–1544. doi: 10.1039/b612064b CrossRefGoogle Scholar
  57. Witte C, Reboud J, Wilson R, Cooper JM, Neale SL (2014) Microfluidic resonant cavities enable acoustophoresis on a disposable superstrate. Lab Chip 14(21):4277–4283. doi: 10.1039/c4lc00749b CrossRefGoogle Scholar
  58. Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE (2006) Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdevices 8(4):299–308. doi: 10.1007/s10544-006-0033-0 CrossRefGoogle Scholar
  59. Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5(11):1233–1239. doi: 10.1039/b509386d CrossRefGoogle Scholar
  60. Yeo LY, Friend JR (2009) Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 3(1):12002. doi: 10.1063/1.3056040 CrossRefGoogle Scholar
  61. Yeo LY, Friend JR (2014) Surface acoustic wave microfluidics. Annu Rev Fluid Mech 46(1):379–406. doi: 10.1146/annurev-fluid-010313-141418 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jia Wei Ng
    • 1
  • David J. Collins
    • 2
  • Citsabehsan Devendran
    • 1
  • Ye Ai
    • 2
  • Adrian Neild
    • 1
  1. 1.Laboratory for Micro Systems, Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonAustralia
  2. 2.Pillar of Engineering Product DevelopmentSingapore University of Technology and DesignSingaporeSingapore

Personalised recommendations