Skip to main content
Log in

Hofmeister effect for electrokinetic transport at ordered DNA layers

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Development of DNA nanotechnology provides the basis to construct novel biomimetic DNA nanochannels. In this work, we report electrokinetic transport behavior of the fluid through the surfaces consisting of double-stranded DNA molecules based on all-atom molecular dynamics simulations. The results show that an electric double layer forms close to the DNA surface, and the fluid can be driven by an externally applied electric field. At large DNA–DNA separation, a velocity jump is observed when the electric field is exerted along the direction of the central axis of DNA. Increasing the DNA separation does not influence the flow velocity in the model parameters investigated. It was also found that the magnitude of electroosmotic flow velocity obeys the Hofmeister series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Belkin M, Aksimentiev A (2016) Molecular dynamics simulation of DNA capture and transport in heated nanopores. ACS Appl Mater Interfaces 8:12599–12608

    Article  Google Scholar 

  • Bell NAW, Engst CR, Ablay M, Divitini G, Ducati C, Liedl T, Keyser UF (2012) DNA origami nanopores. Nano Lett 12:512–517

    Article  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Phys Chem 81:3684–3690

    Article  Google Scholar 

  • Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  Google Scholar 

  • Bonthuis DJ, Netz RR (2012) Unraveling the combined effects of dielectric and viscosity profiles on surface capacitance, electro-osmotic mobility, and electric surface conductivity. Langmuir 28:16049–16059

    Article  Google Scholar 

  • Burns JR, Stulz E, Howorka S (2013) Self-assembled DNA nanopores that span lipid bilayers. Nano Lett 13:2351–2356

    Article  Google Scholar 

  • Cao Q, Zuo C, Li L, Ma Y, Li N (2010) Electroosmotic flow in a nanofluidic channel coated with neutral polymers. Microfluid Nanofluid 9:1051–1062

    Article  Google Scholar 

  • Cao Q, Zuo C, Li L, Yang Y, Li N (2011) Controlling electroosmotic flow by polymer coating: a dissipative particle dynamics study. Microfluid Nanofluid 10:977–990

    Article  Google Scholar 

  • Cao Q, Zuo C, Li L, Zhang Y (2012) Modulation of electroosmotic flow by electric field-responsive polyelectrolyte brushes: a molecular dynamics study. Microfluid Nanofluid 12:649–655

    Article  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Phys Chem 98:10089–10092

    Article  Google Scholar 

  • Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215

    Article  Google Scholar 

  • Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37:5001–5006

    Article  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K\(^+\) conduction and selectivity. Science 280:69–77

    Article  Google Scholar 

  • Hall AR, Scott A, Rotem D, Mehta KK, Bayley H, Dekker C (2010) Hybrid pore formation by directed insertion of haemolysin into solid-state nanopores. Nat Nanotechnol 5:874–877

    Article  Google Scholar 

  • Hernández-Ainsa S, Misiunas K, Thacker VV, Hemmig EA, Keyser UF (2014) Voltage-dependent properties of DNA origami nanopores. Nano Lett 14:1270–1274

    Article  Google Scholar 

  • Hernández-Ainsa S, Keyser UF (2014) DNA origami nanopores: developments, challenges and perspectives. Nanoscale 6:14121–14132

    Article  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  Google Scholar 

  • Hess B (2002) Determining the shear viscosity of model liquids from molecular dynamics simulations. J Chem Phys 116:209–217

    Article  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hou X, Guo W, Jiang L (2011) Biomimetic smart nanopores and nanochannels. Chem Soc Rev 40:2385–2401

    Article  Google Scholar 

  • Hud NV, Polak M (2001) DNA cation interactions: the major and minor grooves are flexible ionophores. Curr Opin Struct Biol 11:293–301

    Article  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  Google Scholar 

  • Kasianowicz J, Brandin E, Branton D, Deamer D (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93:13770–13773

    Article  Google Scholar 

  • Kim YW, Netz RR (2006) Electro-osmosis at inhomogeneous charged surfaces: hydrodynamic versus electric friction. J Chem Phys 124:114709

    Article  Google Scholar 

  • Kowalczyk SW, Wells DB, Aksimentiev A, Dekker C (2012) Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett 12:1038–1044

    Article  Google Scholar 

  • Langecker M, Arnaut V, Martin TG, List J, Renner S, Mayer M, Dietz H, Simmel FC (2012) Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338:932–936

    Article  Google Scholar 

  • Li AZ, Huang H, Re X, Qi LJ, Marx KA (1998) A gel electrophoresis study of the competitive effects of monovalent counterion on the extent of divalent counterions binding to DNA. Biophys J 74:964–973

    Article  Google Scholar 

  • Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA (2001) Ion-beam sculpting at nanometre length scales. Nature 412:166–169

    Article  Google Scholar 

  • Li C-Y, Hemmig EA, Kong J, Yoo J, Hernndez-Ainsa S, Keyser UF, Aksimentiev A (2015) Ionic conductivity, structural deformation, and programmable anisotropy of DNA origami in electric field. ACS Nano 9:1420–1433

    Article  Google Scholar 

  • Luan B, Aksimentiev A (2008) Electro-osmotic screening of the DNA charge in a nanopore. Phys Rev E 78:021912

    Article  Google Scholar 

  • Luan B, Aksimentiev A (2010) Electric and electrophoretic inversion of the DNA charge in multivalent electrolytes. Soft Matter 6:243–246

    Article  Google Scholar 

  • Lyklema J (1995) Fundamentals of interface and colloid science. Academic Press, London

    Google Scholar 

  • Mamatkulov S, Fyta M, Netz RR (2013) Force fields for divalent cations based on single-ion and ion-pair properties. J Chem Phys 138:024505

    Article  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  Google Scholar 

  • Rouzina I, Bloomfield VA (1998) DNA bending by small mobile multivalent cations. Biophys J 74:3152–3164

    Article  Google Scholar 

  • Sakai N, Matile S (2013) Synthetic ion channels. Langmuir 29:9031–9040

    Article  Google Scholar 

  • Savelyev A, Papoian GA (2006) Electrostatic, steric, and hydration interactions favor Na\(^+\) condensation around DNA compared with K\(^+\). J Am Chem Soc 128:14506–14518

    Article  Google Scholar 

  • Schwierz N, Horinek D, Netz RR (2015) Specific Ion binding to carboxylic surface groups and the pH dependence of the hofmeister series. Langmuir 31:215–225

    Article  Google Scholar 

  • Seifert A, Gpfrich K, Burns JR, Fertig N, Keyser UF, Howorka S (2015) Bilayer-spanning DNA nanopores with voltage-switching between open and closed state. ACS Nano 9:1117–1126

    Article  Google Scholar 

  • Sendner C, Horinek D, Bocquet L, Netz RR (2009) Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. Langmuir 25:10768–10781

    Article  Google Scholar 

  • Simonin J-P, Krebs S, Kunz W (2006) Inclusion of ionic hydration and association in the MSA-NRTL model for a description of the thermodynamic properties of aqueous ionic solutions: application to solutions of associating acids. Ind Eng Chem Res 45:4345–4354

    Article  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074

    Article  Google Scholar 

  • Weast RC (1986) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  • Yoo J, Wilson J, Aksimentiev A (2016) Improved model of hydrated calcium ion for molecular dynamics simulations using classical biomolecular force fields. Biopolymers 105:752–763

    Article  Google Scholar 

  • Yoo J, Aksimentiev A (2012) Improved parametrization of Li\(^+\), Na\(^+\), K\(^+\), and Mg\(^2+\) ions for all-atom molecular dynamics simulations of nucleic acid systems. J Phys Chem Lett 3:45–50

    Article  Google Scholar 

  • Yoo J, Aksimentiev A (2015) Molecular dynamics of membrane-spanning DNA channels: conductance mechanism, electro-osmotic transport, and mechanical gating. J Phys Chem Lett 6:4680–4687

    Article  Google Scholar 

Download references

Acknowledgments

QC gratefully acknowledges support by the Alexander von Humboldt Foundation. This work was also supported by the National Natural Science Foundation of China under Grant No. 31500801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianqian Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q. Hofmeister effect for electrokinetic transport at ordered DNA layers. Microfluid Nanofluid 20, 132 (2016). https://doi.org/10.1007/s10404-016-1797-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1797-z

Keywords

Navigation