Skip to main content
Log in

Effect of solvent polarization on electroosmotic transport in a nanofluidic channel

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, we develop a theory based on the Langevin–Bikerman approach to study the electroosmotic (EOS) transport in a nanofluidic channel in the presence of finite solvent polarization effect (SPE). At the outset, we conduct an analysis based on practically achievable parameters to highlight the consequence of SPE in the variation in the electric double-layer (EDL) electrostatics. We witness that SPE invariably increases the effective EDL thickness; our numerical results are justified through a scaling analysis. More importantly, we unravel that the EOS transport, most remarkably, shows negligible influence on the qualitative variation in the EDL electrostatic potential; rather, it is dictated by the ratio of the effective to the actual EDL thicknesses. This finding, supported by scaling analysis, ensures that for the chosen set of parameters, SPE invariably enhances the EOS transport. Apart from shedding light on this extremely non-intuitive nanoscopic electroosmotic flow phenomenon, we anticipate that the present study will embolden us to better control the nanofluidic transport for a plethora of biological and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bandopadhyay A, Chakraborty S (2013) Ionic size dependent electroosmosis in ion-selective microchannels and nanochannels. Electrophoresis 34:2193–2198

    Article  Google Scholar 

  • Bandopadhyay A, Chakraborty S (2015) Consistent prediction of streaming potential in non-Newtonian fluids: the effect of solvent rheology and confinement on ionic conductivity. Phys Chem Chem Phys 17:7282–7290

    Article  Google Scholar 

  • Bandopadhyay A, Dhar J (2013) Effects of solvent-mediated nonelectrostatic ion–ion interactions on a streaming potential in microchannels and nanochannels. Phys Rev E 88:033014

    Article  Google Scholar 

  • Bandopadhyay A, Goswami P, Chakraborty S (2013) Regimes of streaming potential in cylindrical nano-pores in presence of finite sized ions and charge induced thickening: an analytical approach. J Chem Phys 139:224503

    Article  Google Scholar 

  • Bandopadhyay A, Hossain SS, Chakraborty S (2014) Ionic size dependent electroviscous effects in ion-selective nanopores. Langmuir 30:7251–7258

    Article  Google Scholar 

  • Bazant MZ, Kilic MS, Storey BD, Ajdari A (2009) Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv Colloid Interface Sci 152:48–88

    Article  Google Scholar 

  • Bazant MZ, Storey BD, Kornyshev AA (2011) Double layer in ionic liquids: overscreening versus crowding. Phys Rev Lett 106:046102

    Article  Google Scholar 

  • Bohnic K, Kralj-Iglic V, Iglic A (2001) Thickness of electrical double layer. Effect of ion size. Electrochim Acta 46:3033–3040

    Article  Google Scholar 

  • Bohnic K, Iglic A, Slivnik T, Kralj-Iglic V (2002) Charged cylindrical surfaces: effect of finite ion size. Bioelectrochemistry 57:73–81

    Article  Google Scholar 

  • Bohinc K, Shrestha A, Brumen M, May S (2012) Poisson–Helmholtz–Boltzmann model of the electric double layer: analysis of monovalent ionic mixtures. Phys Rev E 85:031130

    Article  Google Scholar 

  • Bonthius DJ, Netz RR (2012) Unraveling the combined effects of dielectric and viscosity profiles on surface capacitance, electro-osmotic mobility, and electric surface conductivity. Langmuir 28:16049–59

    Article  Google Scholar 

  • Borukhov I, Andelman D, Orland H (1997) Steric effects in electrolytes: a modified Poisson–Boltzmann equation. Phys Rev Lett 79:435

    Article  Google Scholar 

  • Borukhov I, Andelman D, Orland H (2000) Adsorption of large ions from an electrolyte solution: a modified Poisson–Boltzmann equation. Electrochim Acta 46:221–229

    Article  Google Scholar 

  • Chakraborty S, Das S (2008) Streaming-field-induced convective transport and its influence on the electroviscous effects in narrow fluidic confinement beyond the Debye–Hückel limit. Phys Rev E 77:037303

    Article  Google Scholar 

  • Chanda S, Das S (2014) Effect of finite ion sizes in an electrostatic potential distribution for a charged soft surface in contact with an electrolyte solution. Phys Rev E 89:012307

    Article  Google Scholar 

  • Chanda S, Sinha S, Das S (2014) Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter 10:7558

    Article  Google Scholar 

  • Chen G, Das S (2015) Streaming potential and electroviscous effects in soft nanochannels beyond Debye–Hückel linearization. J Colloid Interface Sci 445:357–363

    Article  Google Scholar 

  • Chen G, Das S (2015) Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density. J Appl Phys 117:185304

    Article  Google Scholar 

  • Das S (2012) Electric-double-layer potential distribution in multiple-layer immiscible electrolytes: effect of finite ion sizes. Phys Rev E 85:012502

    Article  Google Scholar 

  • Das S, Chakraborty S (2009) Influence of streaming potential on the transport and separation of charged spherical solutes in nanochannels subjected to particle–wall interactions. Langmuir 25:9863

    Article  Google Scholar 

  • Das S, Chakraborty S (2010) Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements. Langmuir 26:11589

    Article  Google Scholar 

  • Das S, Chakraborty S (2011) Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena. Phys Rev E 84:012501

    Article  Google Scholar 

  • Das T, Das S, Chakraborty S (2009) Influences of streaming potential on cross stream migration of flexible polymer molecules in nanochannel flows. J Chem Phys 130:244904

    Article  Google Scholar 

  • Das S, Chakraborty S, Mitra SK (2012) Redefining electrical double layer thickness in narrow confinements: effect of solvent polarization. Phys Rev E 85:051508

    Article  Google Scholar 

  • Das S, Chakraborty S, Mitra SK (2012a) Ring stains in the presence of electrokinetic interactions. Phys Rev E 85:046311

    Article  Google Scholar 

  • Das S, Mitra SK, Chakraborty S (2012b) Ring stains in the presence of electromagnetohydrodynamic interactions. Phys Rev E 86:056317

    Article  Google Scholar 

  • Das S, Mitra SK, Chakraborty S (2012) Wenzel and Cassie–Baxter states of an electrolytic drop on charged surfaces. Phys Rev E 86:011603

    Article  Google Scholar 

  • Das S, Guha A, Mitra SK (2013) Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping Electric Double Layers. Anal Chim Acta 808:159–166

    Article  Google Scholar 

  • Dhar J, Ghosh U, Chakraborty S (2014) Alterations in streaming potential in presence of time periodic pressure-driven flow of a power law fluid in narrow confinements with nonelectrostatic ion–ion interactions. Electrophoresis 35:662–669

    Article  Google Scholar 

  • Ghosal S (2004) Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis. Electrophoresis 25:214–228

    Article  Google Scholar 

  • Ghosal S (2006) Electrokinetic flow and dispersion in capillary electrophoresis. Ann Rev Fluid Mech 38:309–338

    Article  MathSciNet  MATH  Google Scholar 

  • Gongadze E, Iglic A (2015) Asymmetric size of ions and orientational ordering of water dipoles in electric double layer model: an analytical mean-field approach. Electrochim Acta 178:541–545

    Article  Google Scholar 

  • Gongadze E, van Rienen U, Iglic A (2011a) Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime. Cell Mol Biol Lett 16:576–594

    Article  Google Scholar 

  • Gongadze E, van Rienen U, Kralj-Iglic V, Iglic A (2011b) Langevin Poisson–Boltzmann equation: point-like ions and water dipoles near a charged surface. Gen Physiol Biophys 30:130–137

    Article  Google Scholar 

  • Gongadze E, van Rienen U, Kralj-Iglic V, Iglic A (2013) Spatial variation of permittivity of an electrolyte solution in contact with a charged metal surface: a mini review. Comput Methods Biomech Biomed Eng 16:463–480

    Article  Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science. Academic Press, London

    Google Scholar 

  • Iglic A, Gongadze E, Bohinc K (2010) Excluded volume effect and orientational ordering near charged surface in solution of ions and Langevin dipoles. Bioelectrochemistry 79:223–227

    Article  Google Scholar 

  • Ke K, Hasselbrink EF Jr, Hunt AJ (2005) Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates. Anal Chem 77:5083–5088

    Article  Google Scholar 

  • Kilic MS, Bazant MZ, Ajdari A (2007) Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson–Nernst–Planck equations. Phys Rev E 75:021503

    Article  Google Scholar 

  • Kim D, Darve E (2006) Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels. Phys Rev E 73:051203

    Article  Google Scholar 

  • Kjellander R (2009) Intricate coupling between ion–ion and ion–surface correlations in double layers as illustrated by charge inversion—combined effects of strong Coulomb correlations and excluded volume. J Phys Condens Matter 21:424101-17

    Article  Google Scholar 

  • Lamperski S, Outhwaite CW (2002) Exclusion volume term in the inhomogeneous Poisson–Boltzmann theory for high surface charge. Langmuir 18:3423–3424

    Article  Google Scholar 

  • Levine S, Feat G (1977) Ion-pair correlation function in electric double layer theory. Part 2. Relevance to the discreteness-of-charge effect. J Chem Soc Faraday Trans 2(73):1359–1370

    Article  Google Scholar 

  • Luque FJ, Alhambra C, Orozco M (1995) Effect of solvent polarization on bimolecular interactions. J Phys Chem 99:11344–11349

    Article  Google Scholar 

  • Lyklema J (1993) Fundamentals of interface and colloid science, vol I. Academic Press, London

    Google Scholar 

  • Major DT, York DM, Gao J (2005) Solvent polarization and kinetic isotope effects in nitroethane deprotonation and implications to the nitroalkane oxidase reaction. J Am Chem Soc 127:16374–16375

    Article  Google Scholar 

  • Manciu M, Ruckenstein E (2001) Oscillatory and monotonic polarization. The polarization contribution to the hydration force. Langmuir 17:7582–7592

    Article  Google Scholar 

  • Manciu M, Ruckenstein E (2002) The coupling between the hydration and double layer interactions. Langmuir 18:7584–7593

    Article  Google Scholar 

  • Menard LD, Ramsey JM (2013) Electrokinetically-driven transport of DNA through focused ion beam milled nanofluidic channels. Anal Chem 85:1146–53

    Article  Google Scholar 

  • Misra RP, Das S, Mitra SK (2013) Electric double layer force between charged surfaces: effect of solvent polarization. J Chem Phys 138:114703

    Article  Google Scholar 

  • Outhwaite CW (1976) A treatment of solvent effects in the potential theory of electrolyte solutions. Mol Phys 31:1345–1357

    Article  Google Scholar 

  • Outhwaite CW (1983) Towards a mean electrostatic potential treatment of an ion–dipole mixture or a dipolar system next to a plane wall. Mol Phys 48:599–614

    Article  Google Scholar 

  • Salieb-Beugelaar GB, Teapal J, van Nieuwkasteele J, Wijnperle D, Tegenfeldt JO, Lisdat F, van den Berg A, Eijkel JCT (2008) Field-dependent DNA mobility in 20 nm high nanoslits. Nano Lett 8:1785–1790

    Article  Google Scholar 

  • Schiby D, Ruckenstein E (1983a) On the coupling between the double layer and the solvent polarization fields. Chem Phys Lett 100:277–281

    Article  Google Scholar 

  • Schiby D, Ruckenstein E (1983b) The role of the polarization layers in hydration forces. Chem Phys Lett 95:435–438

    Article  Google Scholar 

  • Storey BD, Bazant MZ (2012) Effects of electrostatic correlations on electrokinetic phenomena. Phys Rev E 86:056303

    Article  Google Scholar 

  • Storey BD, Edwards LR, Kilic MS, Bazant MZ (2008) Steric effects on ac electro-osmosis in dilute electrolytes. Phys Rev E 77:036317

    Article  Google Scholar 

  • Tsouris C, Culbertson CT, DePaoli DW, Jacobson SC, de Almeida VF, Ramsey JM (2004) Electrohydrodynamic mixing in microchannels. AIChE J 49:2181–2186

    Article  Google Scholar 

  • Uba FI, Pullagurla SR, Sirasunthorn N, Wu J, Park S, Chantiwas R, Cho Y-K, Shin H, Soper SA (2015) Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels. Analyst 140:113–126

    Article  Google Scholar 

  • Velikonja A, Gongadze E, Kralj-Iglic V, Iglic A (2014) Charge dependent capacitance of Stern layer and capacitance of electrode/electrolyte interface. Int J Electrochem Soc 9:5885–5894

    Google Scholar 

  • Zhao H (2012) Influence of nonelectrostatic ion–ion interactions on double-layer capacitance. Phys Rev E 86:051502

    Article  Google Scholar 

Download references

Acknowledgments

Shayandev Sinha acknowledges Laboratory of Physical Sciences (LPS) for partly supporting his graduate studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Das.

Appendix: Nomenclature

Appendix: Nomenclature

Symbol

Definition

Symbol

Definition

h

Channel half height

E

Axial electric field

\(\lambda\)

EDL thickness

\(\psi\)

EDL electrostatic potential

\({\mathcal {F}}\)

Free energy

f

Free energy density

y

Transverse direction

\(\epsilon _0\)

Permittivity of free space

e

Electronic charge

\(\epsilon _r\)

Relative permittivity of liquid

\(k_B\)

Boltzmann constant

T

Temperature in K

\(n_s\)

Number density of lattice sites

\(n_0\)

Bulk number density of ions

\(n_+\)

Number density of cations

\(n_-\)

Number density of anions

\(n_w\)

Number density of water molecules

\(n_{0w}\)

Bulk number density of water molecules

\(p_0\)

Dipole moment of water

\(\alpha\)

Lagrange multiplier

\(\bar{\psi }\)

\(e\psi /k_B T\)

\(\bar{y}\)

y / h

\(\bar{\lambda }\)

\(\lambda /h\)

\(\bar{n}_{\pm }\)

\(n_{\pm }/n_0\)

\({\mathcal {L}}\)

Langevin function

\(\zeta\)

Zeta potential

u

Velocity

\(\bar{\zeta }\)

\(e\zeta /k_B T\)

\(\eta\)

Dynamic viscosity

\(E_0\)

\(k_B T/e h\)

\(u_0\)

\(\epsilon _0 \epsilon _r k_B T E_0/(e \eta )\) (velocity scale)

A

\(p_0/eh\) (dimensionless solvent polarization number)

\(\bar{u}\)

\(u/u_0\)

\(\bar{E}\)

\(E/E_0\)

B

\(n_{0w}/n_0\) (dimensionless bulk water number density)

\(\bar{\lambda }_{\mathrm{eff}}\)

\(\lambda _{\mathrm{eff}}/h\) (dimensionless effective EDL thickness)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Myers, L. & Das, S. Effect of solvent polarization on electroosmotic transport in a nanofluidic channel. Microfluid Nanofluid 20, 119 (2016). https://doi.org/10.1007/s10404-016-1779-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1779-1

Keywords

Navigation