Skip to main content
Log in

Optimization and development of a universal flow-based microfluidic gradient generator

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Generation of concentration gradients of reactive molecules is of fundamental importance for many applications including biology, pharmaceutical and chemical engineering. By numerically simulating the flow behaviour, we reveal the possible factors that cause significant error in the gradients generated by the conventional universal microfluidic gradient generator (MGG) device reported previously. Based on these computational analyses, we optimize the geometrical design of the conventional 2-inlet MGG devices and improve the accuracy of the generated gradients. Moreover, we innovatively propose a 3-inlet MGG design showing desirable accuracy and versatility on creating various gradient profiles using the one single device. We further demonstrate our numerical simulation by fabricating the MGG devices by soft lithography and experimentally produce concentration gradients of diverse power functions. In general, the current study substantially improves the performance of universal MGG devices, which can serve as powerful tools for widespread applications in biology and chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe Y, Kamiya K, Osaki T, Sasaki H, Kawano R, Miki N, Takeuchi S (2015) Nonlinear concentration gradients regulated by the width of channels for observation of half maximal inhibitory concentration (IC 50) of transporter proteins. Analyst 140:5557–5562

    Article  Google Scholar 

  • Ahmed T, Shimizu TS, Stocker R (2010) Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients. Nano Lett 10:3379–3385

    Article  Google Scholar 

  • Ahmed D, Chan CY, Lin SCS, Muddana HS, Nama N, Benkovic SJ, Huang TJ (2013) Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles. Lab Chip 13:328–331

    Article  Google Scholar 

  • Atencia J, Cooksey GA, Locascio LE (2012) A robust diffusion-based gradient generator for dynamic cell assays. Lab Chip 12:309–316

    Article  Google Scholar 

  • Brett ME, DeFlorio R, Stone DE, Eddington DT (2012) A microfluidic device that forms and redirects pheromone gradients to study chemotropism in yeast. Lab Chip 12:3127–3134

    Article  Google Scholar 

  • Chen CY, Wo AM, Jong DS (2012) A microfluidic concentration generator for dose-response assays on ion channel pharmacology. Lab Chip 12:794–801

    Article  Google Scholar 

  • Culbertson CT, Jacobson SC, Ramsey JM (2002) Diffusion coefficient measurements in microfluidic devices. Talanta 56:365–373

    Article  Google Scholar 

  • Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73:1240–1246

    Article  Google Scholar 

  • Destgeer G, Im S, Ha BH, Jung JH, Ansari MA, Sung HJ (2014) Adjustable, rapidly switching microfluidic gradient generation using focused travelling surface acoustic waves. Appl Phys Lett 104:023506

    Article  Google Scholar 

  • Friedrich D, Please CP, Melvin T (2012) Design of novel microfluidic concentration gradient generators suitable for linear and exponential concentration ranges. Chem Eng J 193:296–303

    Article  Google Scholar 

  • Hu Y, Zhang X, Wang W (2011) Simulation of the generation of solution gradients in microfluidic systems using the lattice Boltzmann method. Ind Eng Chem Res 50:13932–13939

    Article  Google Scholar 

  • Irimia D, Geba DA, Toner M (2006) Universal microfluidic gradient generator. Anal Chem 78:3472–3477

    Article  Google Scholar 

  • Jain M, Yeung A, Nandakumar K (2010) Induced charge electro-osmotic concentration gradient generator. Biomicrofluidics 4:014110

    Article  Google Scholar 

  • Kim S, Kim HJ, Jeon NL (2010) Biological applications of microfluidic gradient devices. Integr Biol 2:584–603

    Article  MathSciNet  Google Scholar 

  • Lin B, Levchenko A (2015) Spatial manipulation with microfluidics. Front Bioeng Biotechnol 3:39

    Article  Google Scholar 

  • Lin F, Saadi W, Rhee SW, Wang SJ, Mittal S, Jeon NL (2004) Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab Chip 4:164–167

    Article  Google Scholar 

  • Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8:870–891

    Article  Google Scholar 

  • Saadi W, Rhee SW, Lin F, Vahidi B, Chung BG, Jeon NL (2007) Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed Microdevices 9:627–635

    Article  Google Scholar 

  • Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189

    Article  Google Scholar 

  • Sahai R, Cecchini M, Klingauf M, Ferrari A, Martino C, Castrataro P, Lionetti V, Menciassi A, Beltram F (2011) Microfluidic chip for spatially and temporally controlled biochemical gradient generation in standard cell-culture Petri dishes. Microfluid Nanofluid 11:763–771

    Article  Google Scholar 

  • Sant S, Hancock MJ, Donnelly JP, Iyer D, Khademhosseini A (2010) Biomimetic gradient hydrogels for tissue engineering. Can J Chem Eng 88:899–911

    Article  Google Scholar 

  • Toh AGG, Wang ZP, Yang C, Nguyen NT (2014) Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid 16:1–18

    Article  Google Scholar 

  • Wang H, Chen CH, Xiang Z, Wang M, Lee C (2015) A convection-driven long-range linear gradient generator with dynamic control. Lab Chip 15:1445–1450

    Article  Google Scholar 

  • Wu MH, Huang SB, Lee GB (2010) Microfluidic cell culture systems for drug research. Lab Chip 10:939–956

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  • Xu C, Poh YKC, Roes I, O’Cearbhaill ED, Matthiesen ME, Mu L, Seung YY, Nieves DM, Irimia D, Karp JM (2012) A portable chemotaxis platform for short and long term analysis. PLoS one 7:e44995

    Article  Google Scholar 

  • Yang CG, Wu YF, Xu ZR, Wang JH (2011) A radial microfluidic concentration gradient generator with high-density channels for cell apoptosis assay. Lab Chip 11:3305–3312

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51373153 and 51503208), National Basic Research Program of China (Grant No. 2015CB057301), the Fundamental Research Funds for the Central Universities of China (No. DUT15RC(3)113), the National Science Foundation (DMR-1310266) and the Harvard Materials Research Science and Engineering Center (DMR-1420570).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Wang or Huanan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Huang, X., Wang, P. et al. Optimization and development of a universal flow-based microfluidic gradient generator. Microfluid Nanofluid 20, 89 (2016). https://doi.org/10.1007/s10404-016-1749-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1749-7

Keywords

Navigation