Skip to main content
Log in

Numerical simulation of gas flow in rough microchannels: hybrid kinetic–continuum approach versus Navier–Stokes

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The flow field in a rough microchannel is numerically analyzed using a hybrid solver, dynamically coupling kinetic and Navier–Stokes solutions computed in rarefied and continuum subareas of the flow field, respectively, and a full Navier–Stokes solver. The rough surface is configured with triangular roughness elements, with a maximum relative roughness of 5 % of the channel height. The effects of Mach number, Knudsen number (or Reynolds number) and roughness height are investigated and discussed in terms of Poiseuille number and mass flow rate. Discrepancies between full Navier–Stokes and hybrid solutions are analyzed, assessing the range of validity of Navier–Stokes equations provided with first-order slip boundary conditions for modeling gas flow along a rough surface. Results indicate that the roughness increases Poiseuille number and decreases mass flux in comparison with those for the smooth microchannel. Increasing rarefaction results in further enhancement of roughness effect. At the same time, the compressibility effect is more noticeable than the roughness one, although the compressibility effect is alleviated by increase in the rarefaction. It was found that, although the Navier–Stokes solution of the flow in a smooth channel is accurate up to Kn = 0.1, when relative roughness height is higher than 1.25 % significant errors already appear at Kn = 0.02.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Asako Y, Pi T, Turner SE, Faghri M (2002) Effect of compressibility on gaseous flows in micro-channels. Int J Heat Mass Tran 46:3041–3050

    Article  MATH  Google Scholar 

  • Beylich AE (2000) Solving the kinetic equation for all Knudsen numbers. Phys Fluids 12:444–465

    Article  MATH  Google Scholar 

  • Boyd ID (2003) Predicting breakdown of the continuum equations under rarefied flow conditions. AIP Conf Proc 663:899–906

    Article  MATH  Google Scholar 

  • Cao B, Chen M, Guo Z (2004) Rarefied gas flow in rough microchannels by molecular dynamics simulation. Chinese Phys Lett 21(9):1777–1779

    Article  Google Scholar 

  • Carlson HA, Roveda R, Boyd ID, Candler GV (2004) A hybrid CFD-DSMC method of modeling continuum-rarefied flows. AIAA: 2004-1180

  • Chapman S, Cowling TG (1990) The mathematical theory of non-uniform gases. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Colin S (2005) Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid Nanofluid 1:268–279

    Article  Google Scholar 

  • Croce G, D’Agaro P (2007) Compressibility and rarefaction effects on pressure drop in rough microchannels. Heat Transfer Eng 28(8–9):688–695

    Article  Google Scholar 

  • Croce G, D’Agaro P, Nonino C (2007) Three-dimensional roughness effect on microchannel heat transfer and pressure drop. Int J Heat Mass Tran 50:5249–5259

    Article  MATH  Google Scholar 

  • Crouseilles N, Degond P, Lemou M (2004) A hybrid kinetic/fluid models for solving the gas dynamics Boltzmann–BGK equation. J Comput Phys 199:776–806

    Article  MathSciNet  MATH  Google Scholar 

  • Demsis A, Prabhu SV, Agrawal A (2010) Influence of wall conditions on friction factor for flow of gases under slip conditions. Experimental Therm Fluid Sci 34:1448–1455

    Article  Google Scholar 

  • Gamrat G, Favre-Marinet M, Person SL, Baviere R, Ayela F (2008) An experimental study and modelling of roughness effects on laminar flow in microchannels. J Fluid Mech 594:399–423

    Article  MATH  Google Scholar 

  • Guo ZY, Li ZX (2003) Size effect on microscale single-phase flow and heat transfer. Int J Heat Mass Tran 46(1):149–159

    Article  Google Scholar 

  • Hakak Khadem M, Shams M, Hossainpour S (2009) Effects of rarefaction and compressibility on fluid flow at slip flow regime by direct simulation of roughness. Int J Aero Mech Eng 3(4):204–210

    Google Scholar 

  • Kandlikar S, Schmitt D, Carrano A, Taylor J (2005) Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels. Phys Fluids 17(10):1–11

    Article  MATH  Google Scholar 

  • Karniadakis G., Beskok A., Aluru N. (2005) Microflows and Nanoflows: Fundamentals and Simulation, Springer Science & Business Media

  • Kolobov VI, Arslanbekov RR, Aristov VV, Frolova AA, Zabelok SA (2007) Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement. J Comput Phys 223:589–608

    Article  MATH  Google Scholar 

  • La Torre F, Kenjereš S, Moerel J-L, Kleijn CR (2011) Hybrid simulations of rarefied supersonic gas flows in micro-nozzles. Comput&Fluids 49:312–322

    MathSciNet  MATH  Google Scholar 

  • Le Tallec P, Mallinger F (1997) Coupling Boltzmann and Navier-Stokes equations by half fluxes. J Comput Phys 136:51–67

    Article  MathSciNet  MATH  Google Scholar 

  • Liu C, Yanga J, Ni Y (2011) A multiplicative decomposition of Poiseuille number on rarefaction and roughness by Lattice Boltzmann simulation. Comp Math with Applic 61:3528–3536

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenzini G, Morini GL, Salvigni S (2010) Laminar, transitional and turbulent friction factors for gas flows in smooth and rough microchannels. Int J Therm Sci 49:248–255

    Article  Google Scholar 

  • Morini GL, Yang Y, Chalabi H, Lorenzini M (2011) A critical review of the measurement techniques for the analysis of gas microflows through microchannels. Exper Thermal Fluid Science 35(6):849–869

    Article  Google Scholar 

  • Popov SP, Tcheremissine FG (2005) Method of joint solution of the Boltzmann and Navier-Stokes equations. AIP Conf Proc 762:82–87

    Article  Google Scholar 

  • Pulliam TH (1968) Artificial dissipation models for the Euler equations. J. AIAA 24:1931–1940

    Article  MATH  Google Scholar 

  • Roveda R, Goldstein DB, Varghese PL (2000) Hybrid Euler/direct simulation Monte Carlo calculation of unsteady slit flow. J. Spacecraft Rockets 37(6):753–760

    Article  Google Scholar 

  • Rovenskaya OI (2013a) Kinetic analysis of surface roughness in a microchannel. Comp & Fluid 77:159–165

    Article  MathSciNet  MATH  Google Scholar 

  • Rovenskaya O (2013b) Comparative analysis of the numerical solution of full Boltzmann and BGK model equations for the Poiseuille Flow in a planar microchannel. Comput & Fluids 81:45–56

    Article  MathSciNet  MATH  Google Scholar 

  • Rovenskaya O, Croce G (2013a) Coupling kinetic and continuum equations for micro scale flow computations. Heat Transfer Eng 34(2–3):192–203

    Article  Google Scholar 

  • Rovenskaya O, Croce G (2013b) Numerical investigation of microflow over rough surfaces: coupling approach. J Heat Transfer 135(10):101005. doi:10.1115/1.4024500

    Article  Google Scholar 

  • Rovenskaya O, Croce G (2014a) Application of hybrid solver to gas flow through a slit at arbitrary pressure ratio. Vacuum 109:266–274. doi:10.1016/j.vacuum.2014.04.018

    Article  Google Scholar 

  • Rovenskaya O, Croce G (2014) Application of the hybrid kinetic-continuum solver to the near wall modelling. J Phys Conf Ser 547 012020 (http://iopscience.iop.org/1742-6596/547/1/012020)

  • Schwartzentruber TE, Boyd ID (2006) A hybrid particle-continuum method applied to shock waves. J Comput Phys 215:402–416

    Article  MathSciNet  MATH  Google Scholar 

  • Shakhov EM (1968) Generalization of the Krook kinetic relaxation equation. Fluid Dyn 3:95–96

    Article  Google Scholar 

  • Snir M, Dongarra J, Kowalik JS, Huss-Lederman S, Otto SW, Walker DW (2000) MPI –The complete references. The MIT Press, Cambridge

    Google Scholar 

  • Sun H, Faghri M (2003) Effect of surface roughness on nitrogen flow in a microchannel using the direct simulation Monte Carlo method. Numer Heat Tran Part A 43:1–8

    Article  Google Scholar 

  • Tang GH, Li Z, He YL, Tao WQ (2007) Experimental study of compressibility, roughness and rarefaction influences on microchannel flow. Int J Heat Mass Tran 50:2282–2295

    Article  Google Scholar 

  • Turner SE, Lam LC, Faghri M, Gregory OJ (2004) Experimental investigation of gas flow in microchannels. ASME J Heat Transfer 126:753–762

    Article  Google Scholar 

  • Wijesinghe HS, Hornung R, Garsia AL, Hadjiconstantinou HN (2004) Three-dimensional hybrid continuum-atomistic simulations for multiscale hydrodynamics. J Fluids Eng 126:768–777

    Article  Google Scholar 

  • Wu PY, Little WA (1983) Measurement of friction factor for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerator. Cryogenics 23:273–277

    Article  Google Scholar 

  • Wu PY, Little WA (1984) Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators. Cryogenics 24:415–420

    Article  Google Scholar 

  • Zhang C, Chen Y, Shi M (2010) Effects of roughness elements on laminar flow and heat transfer in microchannels. Chem Eng Process 49(11):1188–1192

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Rovenskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rovenskaya, O.I., Croce, G. Numerical simulation of gas flow in rough microchannels: hybrid kinetic–continuum approach versus Navier–Stokes. Microfluid Nanofluid 20, 81 (2016). https://doi.org/10.1007/s10404-016-1746-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1746-x

Keywords

Navigation