Skip to main content
Log in

Defects of structure in one-dimensional trains of drops of alternating composition

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Merging two periodic droplet trains at a T-junction, we investigate the production of one-dimensional trains of drops of alternating composition. The structure of these trains consists of a succession of well-defined patterns and defects. A discrete model recently introduced to describe the structure of double emulsions made with two-step microfluidic dripping techniques predicts the nature of these patterns and their scheme of arrangement in a train as functions of the rates at which the two droplet trains reach the junction. Millifluidic experiments validate these predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abate AR, Mary P, van Steijn V, Weitz DA (2012) Experimental validation of plugging during drop formation in a T-junction. Lab Chip 12:1516–1521

    Article  Google Scholar 

  • Abolhasani M, Oskooei A, Klinkova A, Kumacheva E, Gunther A (2014) Shaken, and stirred: oscillatory segmented flow for controlled size-evolution of colloidal nanomaterials. Lab Chip 14:2309–2318

    Article  Google Scholar 

  • Ahn K, Kerbage K, Hunt TP, Westervelt RM, Link DR, Weitz DA (2006) Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl Phys Lett 88(2):024104

    Article  Google Scholar 

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using flow focusing. Appl Phys Lett 82(3):364–366

    Article  Google Scholar 

  • Baraban L, Bertholle F, Salverda MLM, Bremond N, Panizza P, Baudry J, de Visser JAGM, Bibette J (2011) Millifluidic droplet analyser for microbiology. Lab Chip 11:4057–4062

    Article  Google Scholar 

  • Baroud CN, Delville J-P, Gallaire F, Wunenburger R (2007) Thermocapillary valve for droplet production and sorting. Phys Rev E 75:046302

    Article  Google Scholar 

  • Baroud CN, de Saint Vincent MR, Delville J-P (2007) An optical toolbox for total control of droplet microfluidics. Lab Chip 7:1029–1033

    Article  Google Scholar 

  • Bithi SS, Vanapalli SA (2015) Collective dynamics of non-coalescing and coalescing droplets in microfluidic parking networks. Soft Matter 11:5122–5132

    Article  Google Scholar 

  • Bremond N, Thiam AR, Bibette J (2008) Decompressing emulsion droplets favors coalescence. Phys Rev Lett 100:024501

    Article  Google Scholar 

  • Chabert M, Dorfman KD, Viovy J-L (2005) Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis 26(19):3706–3715

    Article  Google Scholar 

  • Champagne N, Vasseur R, Montourcy A, Bartolo D (2010) Traffic jams and intermittent flows in microfluidic networks. Phys Rev Lett 105:044502

    Article  Google Scholar 

  • Cubaud T (2009) Deformation and breakup of high-viscosity droplets with symmetric microfluidic cross flows. Phys Rev E 80:026307

    Article  Google Scholar 

  • de Menech M (2006) Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model. Phys Rev E 73:031505

    Article  Google Scholar 

  • Engl W, Roche M, Colin A, Panizza P, Ajdari A (2005) Droplet traffic at a simple junction at low capillary numbers. Phys Rev Lett 95:208304

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction- scaling and mechanism of break-up. Lab Chip 6:437–446

    Article  Google Scholar 

  • Gielen F, van Vliet L, Koprowski BT, Devenish SRA, Fischlechner M, Edel JB, deMello AJ, Hollfelder F (2013) A fully unsupervised compartment-on-demand platform for precise nanoliter assays of time-dependent steady-state enzyme kinetics and inhibition. Anal Chem 85(9):4761–4769

    Article  Google Scholar 

  • Glawdel T, Elbuken C, Ren CL (2012) Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations. Phys Rev E 85:016322

    Article  Google Scholar 

  • Grigoriev RO, Schatz MF, Sharma V (2006) Chaotic mixing in microdroplets. Lab Chip 6:1369–1372

    Article  Google Scholar 

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110

    Article  Google Scholar 

  • Hung L-H, Choi KM, Tseng W-Y, Tan Y-C, Shea KJ, Lee AP (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6:174–178

    Article  Google Scholar 

  • Jakiela S, Kaminski TS, Cybulski O, Weibel DB, Garstecki P (2013) Bacterial growth and adaptation in microdroplet chemostats. Angew Chem Int Ed 52(34):8908–8911

    Article  Google Scholar 

  • Joanicot M, Ajdari A (2005) Droplet control for microfluidics. Science 309(5736):887–8

    Article  Google Scholar 

  • Laval P, Lisai N, Salmon JB, Joanicot M (2007) A microfluidic device based on droplet storage for screening solubility diagrams. Lab Chip 7:829–834

    Article  Google Scholar 

  • Leal-Calderon F, Schmitt V, Bibette J (2007) Emulsion science: basic principles, 2nd edn. Springer, New York

    Google Scholar 

  • Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503

    Article  Google Scholar 

  • Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45(16):2556–2560

    Article  Google Scholar 

  • Maenaka H, Yamada M, Yasuda M, Seki M (2008) Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Langmuir 24(8):4405–4410

    Article  Google Scholar 

  • Menetrier-Deremble L, Tabeling P (2006) Droplet breakup in microfluidic junctions of arbitrary angles. Phys Rev E 74:035303R

    Article  Google Scholar 

  • Muradoglu M, Stone HA (2005) Mixing in drop moving through a serpentine channel: a computational study. Phys Fluids 17:073305

    Article  MATH  Google Scholar 

  • Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20(23):9905–9908

    Article  Google Scholar 

  • Panizza P, Engl W, Hany C, Backov R (2008) Controlled production of hierarchically organized large emulsions and particles using assemblies on line of co-axial flow devices. Coll Surf A 312(1):24–31

    Article  Google Scholar 

  • Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101

    Article  Google Scholar 

  • Prat L, Sarrazin F, Tasseli J, Marty A (2006) Increasing and decreasing droplets velocity in microchannels. Microfluid Nanofluid 2:271–274

    Article  Google Scholar 

  • Rhee M, Burns MA (2008) Drop mixing in a microchannel for lab-on-a-chip platforms. Langmuir 24(2):590–601

    Article  Google Scholar 

  • Salkin L, Courbin L, Panizza P (2012) Microfluidic breakups of confined droplets against a linear obstacle: the importance of the viscosity contrast. Phys Rev E 86:036317

    Article  Google Scholar 

  • Salkin L, Schmit A, Courbin L, Panizza P (2013) Passive breakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries: experiments and models. Lab Chip 13:3022–3032

    Article  Google Scholar 

  • Schmit A, Courbin L, Marquis M, Renard D, Panizza P (2014) A pendant drop method for the production of calibrated double emulsions and emulsion gels. RSC Adv 4:28504–28510

    Article  Google Scholar 

  • Schmit A, Salkin L, Courbin L, Panizza P (2014) Commensurability-driven structural defects in double emulsions produced with two-step microfluidic techniques. Soft Matter 10:4743–4748

    Article  Google Scholar 

  • Seeman R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics. Rep Prog Phys 75(1):016601

    Article  Google Scholar 

  • Sessoms DA, Amon A, Courbin L, Panizza P (2010) Complex dynamics of droplet traffic in a bifurcating microfluidic channel: periodicity, multistability, and selection rules. Phys Rev Lett 105:154501

    Article  Google Scholar 

  • Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Chu LY, Kim JW, Fernandez-Nieves A, Martinez J, Weitz DA (2008) Designer emulsions using microfluidics. Mater Today 11(4):18–27

    Article  Google Scholar 

  • Shi W, Qin J, Ye N, Lin B (2008) Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8:1432–1435

    Article  Google Scholar 

  • Shim JU, Cristobal G, Link DR, Thorsen T, Jia Y, Piatelli K, Fraden S (2007) Control and measurement of the phase behavior of aqueous solutions using microfluidics. J Am Chem Soc 129(28):8825–8835

    Article  Google Scholar 

  • Song H, Bringer MR, Tice JD, Gerdts CJ, Ismagilov RF (2003) Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl Phys Lett 83(22):4664–4666

    Article  Google Scholar 

  • Tan Y-C, Fisher JS, Lee AI, Cristini V, Lee AP (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4:292–298

    Article  Google Scholar 

  • Tan Y-C, Ho YL, Lee AP (2007) Droplet coalescence by geometrically mediated flow in microfluidic channels. Microfluid Nanofluid 3:495–499

    Article  Google Scholar 

  • Tang SKY, Li Z, Abate AR, Agresti JJ, Weitz DA, Psaltis D, Whitesides GM (2009) A multi-color fast-switching microfluidic droplet dye laser. Lab Chip 9:2767–2771

    Article  Google Scholar 

  • Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220

    Article  Google Scholar 

  • Trivedi V, Doshi A, Kurup GK, Ereifej E, Vandevord PJ, Basu AS (2010) A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening. Lab Chip 10:2433–2442

    Article  Google Scholar 

  • Zheng B, Tice JD, Roach LS, Ismagilov RF (2004) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew Chem Int Ed 43(19):2508–2511

    Article  Google Scholar 

  • Zheng B, Tice JD, Ismagilov RF (2004) Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal Chem 76(17):4977–4982

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brittany Region of France and le Fond Européen de Développement Régional (FEDER). H. Maruoka thanks TUAT for granting him a fellowship to work at IPR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laurent Courbin or Pascal Panizza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruoka, H., Schmit, A., Courbin, L. et al. Defects of structure in one-dimensional trains of drops of alternating composition. Microfluid Nanofluid 20, 82 (2016). https://doi.org/10.1007/s10404-016-1745-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1745-y

Keywords

Navigation