Advertisement

Defects of structure in one-dimensional trains of drops of alternating composition

  • Hirokazu Maruoka
  • Alexandre Schmit
  • Laurent CourbinEmail author
  • Pascal PanizzaEmail author
Research Paper
  • 601 Downloads

Abstract

Merging two periodic droplet trains at a T-junction, we investigate the production of one-dimensional trains of drops of alternating composition. The structure of these trains consists of a succession of well-defined patterns and defects. A discrete model recently introduced to describe the structure of double emulsions made with two-step microfluidic dripping techniques predicts the nature of these patterns and their scheme of arrangement in a train as functions of the rates at which the two droplet trains reach the junction. Millifluidic experiments validate these predictions.

Keywords

Microchannel Multiphase flow Droplet trains 

Notes

Acknowledgments

This work was supported by the Brittany Region of France and le Fond Européen de Développement Régional (FEDER). H. Maruoka thanks TUAT for granting him a fellowship to work at IPR.

References

  1. Abate AR, Mary P, van Steijn V, Weitz DA (2012) Experimental validation of plugging during drop formation in a T-junction. Lab Chip 12:1516–1521CrossRefGoogle Scholar
  2. Abolhasani M, Oskooei A, Klinkova A, Kumacheva E, Gunther A (2014) Shaken, and stirred: oscillatory segmented flow for controlled size-evolution of colloidal nanomaterials. Lab Chip 14:2309–2318CrossRefGoogle Scholar
  3. Ahn K, Kerbage K, Hunt TP, Westervelt RM, Link DR, Weitz DA (2006) Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl Phys Lett 88(2):024104CrossRefGoogle Scholar
  4. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using flow focusing. Appl Phys Lett 82(3):364–366CrossRefGoogle Scholar
  5. Baraban L, Bertholle F, Salverda MLM, Bremond N, Panizza P, Baudry J, de Visser JAGM, Bibette J (2011) Millifluidic droplet analyser for microbiology. Lab Chip 11:4057–4062CrossRefGoogle Scholar
  6. Baroud CN, Delville J-P, Gallaire F, Wunenburger R (2007) Thermocapillary valve for droplet production and sorting. Phys Rev E 75:046302CrossRefGoogle Scholar
  7. Baroud CN, de Saint Vincent MR, Delville J-P (2007) An optical toolbox for total control of droplet microfluidics. Lab Chip 7:1029–1033CrossRefGoogle Scholar
  8. Bithi SS, Vanapalli SA (2015) Collective dynamics of non-coalescing and coalescing droplets in microfluidic parking networks. Soft Matter 11:5122–5132CrossRefGoogle Scholar
  9. Bremond N, Thiam AR, Bibette J (2008) Decompressing emulsion droplets favors coalescence. Phys Rev Lett 100:024501CrossRefGoogle Scholar
  10. Chabert M, Dorfman KD, Viovy J-L (2005) Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis 26(19):3706–3715CrossRefGoogle Scholar
  11. Champagne N, Vasseur R, Montourcy A, Bartolo D (2010) Traffic jams and intermittent flows in microfluidic networks. Phys Rev Lett 105:044502CrossRefGoogle Scholar
  12. Cubaud T (2009) Deformation and breakup of high-viscosity droplets with symmetric microfluidic cross flows. Phys Rev E 80:026307CrossRefGoogle Scholar
  13. de Menech M (2006) Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model. Phys Rev E 73:031505CrossRefGoogle Scholar
  14. Engl W, Roche M, Colin A, Panizza P, Ajdari A (2005) Droplet traffic at a simple junction at low capillary numbers. Phys Rev Lett 95:208304CrossRefGoogle Scholar
  15. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction- scaling and mechanism of break-up. Lab Chip 6:437–446CrossRefGoogle Scholar
  16. Gielen F, van Vliet L, Koprowski BT, Devenish SRA, Fischlechner M, Edel JB, deMello AJ, Hollfelder F (2013) A fully unsupervised compartment-on-demand platform for precise nanoliter assays of time-dependent steady-state enzyme kinetics and inhibition. Anal Chem 85(9):4761–4769CrossRefGoogle Scholar
  17. Glawdel T, Elbuken C, Ren CL (2012) Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations. Phys Rev E 85:016322CrossRefGoogle Scholar
  18. Grigoriev RO, Schatz MF, Sharma V (2006) Chaotic mixing in microdroplets. Lab Chip 6:1369–1372CrossRefGoogle Scholar
  19. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110CrossRefGoogle Scholar
  20. Hung L-H, Choi KM, Tseng W-Y, Tan Y-C, Shea KJ, Lee AP (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6:174–178CrossRefGoogle Scholar
  21. Jakiela S, Kaminski TS, Cybulski O, Weibel DB, Garstecki P (2013) Bacterial growth and adaptation in microdroplet chemostats. Angew Chem Int Ed 52(34):8908–8911CrossRefGoogle Scholar
  22. Joanicot M, Ajdari A (2005) Droplet control for microfluidics. Science 309(5736):887–8CrossRefGoogle Scholar
  23. Laval P, Lisai N, Salmon JB, Joanicot M (2007) A microfluidic device based on droplet storage for screening solubility diagrams. Lab Chip 7:829–834CrossRefGoogle Scholar
  24. Leal-Calderon F, Schmitt V, Bibette J (2007) Emulsion science: basic principles, 2nd edn. Springer, New YorkGoogle Scholar
  25. Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503CrossRefGoogle Scholar
  26. Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45(16):2556–2560CrossRefGoogle Scholar
  27. Maenaka H, Yamada M, Yasuda M, Seki M (2008) Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Langmuir 24(8):4405–4410CrossRefGoogle Scholar
  28. Menetrier-Deremble L, Tabeling P (2006) Droplet breakup in microfluidic junctions of arbitrary angles. Phys Rev E 74:035303RCrossRefGoogle Scholar
  29. Muradoglu M, Stone HA (2005) Mixing in drop moving through a serpentine channel: a computational study. Phys Fluids 17:073305CrossRefzbMATHGoogle Scholar
  30. Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20(23):9905–9908CrossRefGoogle Scholar
  31. Panizza P, Engl W, Hany C, Backov R (2008) Controlled production of hierarchically organized large emulsions and particles using assemblies on line of co-axial flow devices. Coll Surf A 312(1):24–31CrossRefGoogle Scholar
  32. Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101CrossRefGoogle Scholar
  33. Prat L, Sarrazin F, Tasseli J, Marty A (2006) Increasing and decreasing droplets velocity in microchannels. Microfluid Nanofluid 2:271–274CrossRefGoogle Scholar
  34. Rhee M, Burns MA (2008) Drop mixing in a microchannel for lab-on-a-chip platforms. Langmuir 24(2):590–601CrossRefGoogle Scholar
  35. Salkin L, Courbin L, Panizza P (2012) Microfluidic breakups of confined droplets against a linear obstacle: the importance of the viscosity contrast. Phys Rev E 86:036317CrossRefGoogle Scholar
  36. Salkin L, Schmit A, Courbin L, Panizza P (2013) Passive breakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries: experiments and models. Lab Chip 13:3022–3032CrossRefGoogle Scholar
  37. Schmit A, Courbin L, Marquis M, Renard D, Panizza P (2014) A pendant drop method for the production of calibrated double emulsions and emulsion gels. RSC Adv 4:28504–28510CrossRefGoogle Scholar
  38. Schmit A, Salkin L, Courbin L, Panizza P (2014) Commensurability-driven structural defects in double emulsions produced with two-step microfluidic techniques. Soft Matter 10:4743–4748CrossRefGoogle Scholar
  39. Seeman R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics. Rep Prog Phys 75(1):016601CrossRefGoogle Scholar
  40. Sessoms DA, Amon A, Courbin L, Panizza P (2010) Complex dynamics of droplet traffic in a bifurcating microfluidic channel: periodicity, multistability, and selection rules. Phys Rev Lett 105:154501CrossRefGoogle Scholar
  41. Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Chu LY, Kim JW, Fernandez-Nieves A, Martinez J, Weitz DA (2008) Designer emulsions using microfluidics. Mater Today 11(4):18–27CrossRefGoogle Scholar
  42. Shi W, Qin J, Ye N, Lin B (2008) Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8:1432–1435CrossRefGoogle Scholar
  43. Shim JU, Cristobal G, Link DR, Thorsen T, Jia Y, Piatelli K, Fraden S (2007) Control and measurement of the phase behavior of aqueous solutions using microfluidics. J Am Chem Soc 129(28):8825–8835CrossRefGoogle Scholar
  44. Song H, Bringer MR, Tice JD, Gerdts CJ, Ismagilov RF (2003) Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl Phys Lett 83(22):4664–4666CrossRefGoogle Scholar
  45. Tan Y-C, Fisher JS, Lee AI, Cristini V, Lee AP (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4:292–298CrossRefGoogle Scholar
  46. Tan Y-C, Ho YL, Lee AP (2007) Droplet coalescence by geometrically mediated flow in microfluidic channels. Microfluid Nanofluid 3:495–499CrossRefGoogle Scholar
  47. Tang SKY, Li Z, Abate AR, Agresti JJ, Weitz DA, Psaltis D, Whitesides GM (2009) A multi-color fast-switching microfluidic droplet dye laser. Lab Chip 9:2767–2771CrossRefGoogle Scholar
  48. Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220CrossRefGoogle Scholar
  49. Trivedi V, Doshi A, Kurup GK, Ereifej E, Vandevord PJ, Basu AS (2010) A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening. Lab Chip 10:2433–2442CrossRefGoogle Scholar
  50. Zheng B, Tice JD, Roach LS, Ismagilov RF (2004) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew Chem Int Ed 43(19):2508–2511CrossRefGoogle Scholar
  51. Zheng B, Tice JD, Ismagilov RF (2004) Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal Chem 76(17):4977–4982CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyFuchu-shiJapan
  2. 2.Institut de Physique de Rennes (IPR), UMR CNRS 6251Université Rennes 1RennesFrance
  3. 3.NANONantesFrance

Personalised recommendations