Skip to main content

Advertisement

Log in

Inertial effects on cylindrical particle migration in linear shear flow near a wall

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Micro-/nanoparticle-based systems are regarded as one of the possible candidates due to the engineerability and multifunctionality to maximize the accumulation of the nano-/microparticle-based drug delivery system on the target. Recent advances in nanotechnology enable the fabrication of diverse particle shapes from simple spherical particles to more complex shapes. The particle dynamics in blood flow and endocytosis characteristics of non-spherical particles change as the non-sphericity effect increases. We used a numerical approach to investigate the particle dynamics in linear shear flow near a wall. We examined the dynamics of slender cylindrical particles with aspect ratio γ = 5.0 in terms of particle trajectory, velocity, and force variation for different Stokes numbers over time. We identified the rotating inertia of particle near a wall as the source of inertial migration toward the wall. The drift velocity of slender cylindrical particles is comparable to that of discoidal particles. We discuss the possibilities and limitations of using slender cylindrical particles as a drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriani G, de Tullio MD, Ferrari M, Hussain F, Pascazio G, Liu X, Decuzzi P (2012) The preferential targeting of the diseased microvasculature by disk-like particles. Biomaterials 33:5504–5513

    Article  Google Scholar 

  • Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 84:2068

    Google Scholar 

  • Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103:4930–4934

    Article  Google Scholar 

  • Charoenphol P, Huang RB, Eniola-Adefeso O (2010) Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers. Biomaterials 31:1392–1402

    Article  Google Scholar 

  • Charoenphol P, Onyskiw PJ, Carrasco-Teja M, Eniola-Adefeso O (2012) Particle-cell dynamics in human blood flow: implications for vascular-targeted drug delivery. J Biomech 45:2822–2828

    Article  Google Scholar 

  • de Faria PCB, dos Santos LI, Coelho JP, Ribeiro HB, Pimenta MA, Ladeira LO, Gomes DA, Furtado CA, Gazzinelli RT (2014) Oxidized multiwalled carbon nanotubes as antigen delivery system to promote superior CD8(+) T cell response and Protection against cancer. Nano Lett 14:5458–5470

    Article  Google Scholar 

  • Decuzzi P, Gentile F, Granaldi A, Curcio A, Causa F, Indolfi C, Netti P, Ferrari M (2007) Flow chamber analysis of size effects in the adhesion of spherical particles. Int J Nanomed 2:689–696

    Google Scholar 

  • Decuzzi P, Pasqualini R, Arap W, Ferrari M (2009) Intravascular delivery of particulate systems: Does geometry really matter? Pharm Res 26:235–243

    Article  Google Scholar 

  • Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141:320–327

    Article  Google Scholar 

  • Einarsson J, Candelier F, Lundell F, Angilella J, Mehlig B (2015) Effect of weak fluid inertia upon Jeffery orbits. Phys Rev E 91:041002

    Article  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  Google Scholar 

  • Gavze E, Shapiro M (1997) Particles in a shear flow near a solid wall: effect of nonsphericity on forces and velocities. Int J Multiph Flow 23:155–182

    Article  MATH  Google Scholar 

  • Gentile F, Chiappini C, Fine D, Bhavane RC, Peluccio MS, Cheng MM, Liu X, Ferrari M, Decuzzi P (2008) The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech 41:2312–2318

    Article  Google Scholar 

  • Godin B, Driessen WHP, Proneth B, Lee SY, Srinivasan S, Rumbaut R, Arap W, Pasqualini R, Ferrari M, Decuzzi P (2010) An integrated approach for the rational design of nanovectors for biomedical imaging and therapy. Tissue Specifc Vasc Endothel Signals Vector Targeting Pt B 69:31–64

    Article  Google Scholar 

  • Goldman AJ, Cox GR, Brenner H (1967a) Slow viscous motion of a sphere parallel to a plane wall I. Motion through a quiescent fluid. Chem Eng Sci 22:637–651

    Article  Google Scholar 

  • Goldman AJ, Cox GR, Brenner H (1967b) Slow viscous motion of a sphere parallel to a plane wall II. Couette flow. Chem Eng Sci 22:653–660

    Article  Google Scholar 

  • Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618

    Article  Google Scholar 

  • Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA 105:2586–2591

    Article  Google Scholar 

  • Herant M, Heinrich V, Dembo M (2006) Mechanics of neutrophil phagocytosis: experiments and quantitative models. J Cell Sci 119:1903–1913

    Article  Google Scholar 

  • Hossain SS, Zhang Y, Liang X, Hussain F, Ferrari M, Hughes TJ, Decuzzi P (2013) In silico vascular modeling for personalized nanoparticle delivery. Nanomedicine (Lond) 8:343–357

    Article  Google Scholar 

  • Huang RB, Eniola-Adefeso O (2012) Shear stress modulation of IL-1beta-induced E-selectin expression in human endothelial cells. PLoS ONE 7:e31874

    Article  Google Scholar 

  • Hyun JY, Lee SY (2015) A numerical study on the dynamics of nano/micro-sized prismatic particles in linear shear flow near a wall. J Comput Theor Nanosci 12:5685–5692

    Google Scholar 

  • Karimi M, Solati N, Amiri M, Mirshekari H, Mohamed E, Taheri M, Hashemkhani M, Saeidi A, Estiar MA, Kiani P, Ghasemi A, Basri SM, Aref AR, Hamblin MR (2015) Carbon nanotubes part I: preparation of a novel and versatile drug-delivery vehicle. Expert Opin Drug Deliv 12:1071–1087

    Article  Google Scholar 

  • Lee SY, Ferrari M, Decuzzi P (2009a) Design of bio-mimetic particles with enhanced vascular interaction. J Biomech 42:1885–1890

    Article  Google Scholar 

  • Lee SY, Ferrari M, Decuzzi P (2009b) Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20:495101

    Article  Google Scholar 

  • Lee TR, Choi M, Kopacz AM, Yun SH, Liu WK, Decuzzi P (2013) On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better. Sci Rep 3:2079

    Google Scholar 

  • Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    Article  Google Scholar 

  • Onyskiw PJ, Eniola-Adefeso O (2013) Effect of PEGylation on ligand-based targeting of drug carriers to the vascular wall in blood flow. Langmuir 29:11127–11134

    Article  Google Scholar 

  • Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, Napier M, Bear JE, DeSimone JM (2012) PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett 12:5304–5310

    Article  Google Scholar 

  • Pozrikidis C (2006) Flipping of an adherent blood platelet over a substrate. J Fluid Mech 568:161–172

    Article  MathSciNet  MATH  Google Scholar 

  • Rieger C, Kunhardt D, Kaufmann A, Schendel D, Huebner D, Erdmann K, Propping S, Wirth MP, Schwenzer B, Fuessel S, Hampel S (2015) Characterization of different carbon nanotubes for the development of a mucoadhesive drug delivery system for intravesical treatment of bladder cancer. Int J Pharm 479:357–363

    Article  Google Scholar 

  • Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM (2005) Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 127:10096–10100

    Article  Google Scholar 

  • Rosén T, Lundell F, Aidun C (2014) Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow. J Fluid Mech 738:563–590

    Article  Google Scholar 

  • Rosén T, Do-Quang M, Aidun C, Lundell F (2015) The dynamical states of a prolate spheroidal particle suspended in shear flow as a consequence of particle and fluid inertia. J Fluid Mech 771:115–158

    Article  Google Scholar 

  • Sakamoto J, Annapragada A, Decuzzi P, Ferrari M (2007) Antibiological barrier nanovector technology for cancer applications. Expert Opin Drug Deliv 4:359–369

    Article  Google Scholar 

  • Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, Keren S, Bentolila LA, Li J, Rao J, Chen X, Banin U, Wu AM, Sinclair R, Weiss S, Gambhir SS (2009) Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5:126–134

    Article  Google Scholar 

  • Serda RE, Gu J, Burks JK, Ferrari K, Ferrari C, Ferrari M (2009) Quantitative mechanics of endothelial phagocytosis of silicon microparticles. Cytom A 75:752–760

    Article  Google Scholar 

  • Shapiro M, Gavze E (1998) Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity. J Fluid Mech 371:59–79

    Article  MATH  Google Scholar 

  • Shinde Patil VR, Campbell CJ, Yun YH, Slack SM, Goetz DJ (2001) Particle diameter influences adhesion under flow. Biophys J 80:1733–1743

    Article  Google Scholar 

  • Tasciotti E, Liu XW, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MMC, Decuzzi P, Tour JM, Robertson F, Ferrari M (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3:151–157

    Article  Google Scholar 

  • Thompson AJ, Mastria EM, Eniola-Adefeso O (2013) The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow. Biomaterials 34:5863–5871

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sei Young Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.K., Hyun, J.Y., Kim, S.C. et al. Inertial effects on cylindrical particle migration in linear shear flow near a wall. Microfluid Nanofluid 20, 75 (2016). https://doi.org/10.1007/s10404-016-1742-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1742-1

Keywords

Navigation