Skip to main content

Hydrodynamic vertical rotation method for a single cell in an open space


Rotation of a single cell is an indispensable cell manipulation technique for genetic studies and clinical applications. Conventional contact manipulation methods for rotation of a cell use complex control systems and tools, while conventional non-contact manipulation methods have limitations regarding the operating space or range of the rotated cell size. Here, we report on a convenient, non-contact, and open space method for a wide range of single cell sizes (micrometer scale to millimeter scale) rotating in a vertical plane (out-of-plane) of an open space. This method uses a vertical microscale recirculation zone for capturing and rotating the cell. We fabricated a micro-orifice on the surface of a microfluidic chip to generate the micro-recirculation zone and then carried out experiments on vertical rotations of Xenopus oocyte, embryoid body, brine shrimp oocyte, and zebrafish oocyte using this chip. We demonstrated the rotation of four types of cells in the vertical plane between the air–liquid interface and the top surface of the microfluidic chip; then, we conducted a simulation to analyze the dynamics of the vertical rotation of the Xenopus oocyte qualitatively. Our results indicated rotation speed of the four types of cells was controllable by the micro-recirculation zone. The size and density of oocytes also affected the process of capturing and rotation. We expect this method opens new research opportunities in three-dimensional cell manipulation, imaging, and analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Arakawa T, Noguchi M, Sumitomo K et al (2011) High-throughput single-cell manipulation system for a large number of target cells. Biomicrofluidics 5:14114. doi:10.1063/1.3567101

    Article  Google Scholar 

  2. Beddington R, Gertsenstein M, Kristina Vintesten Nagy, Andras N (1999) Manipulating the mouse embryo: a laboratory manual, 4th edn. Cold Spring Harbor, New York

  3. Benhal P, Chase JG, Gaynor P et al (2014) AC electric field induced dipole-based on-chip 3D cell rotation. Lab Chip 14:2717–2727. doi:10.1039/c4lc00312h

    Article  Google Scholar 

  4. Bhagat AAS, Hou HW, Li LD et al (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11:1870–1878. doi:10.1039/c0lc00633e

    Article  Google Scholar 

  5. Elbez R, McNaughton BH, Patel L, et al (2011) Nanoparticle induced cell magneto-rotation: monitoring morphology, stress and drug sensitivity of a suspended single cancer cell. PLoS One. doi: 10.1371/journal.pone.0028475

  6. Fuhr G, Müller T, Schnelle T, Hagedorn R (1994) Radio-frequency microtools for particle and live cell manipulation. Naturwissenschaften 81:528–535

    Article  Google Scholar 

  7. Gianaroli L (2000) Preimplantation genetic diagnosis: polar body and embryo biopsy. Hum Reprod 15(Suppl 4):69–75

    Article  Google Scholar 

  8. Grier DG (2003) A revolution in optical manipulation. Nature 424:810–816. doi:10.1038/nature01935

    Article  Google Scholar 

  9. Hagiwara M, Kawahara T, Yamanishi Y et al (2011) On-chip magnetically actuated robot with ultrasonic vibration for single cell manipulations. Lab Chip 11:2049–2054. doi:10.1039/c1lc20164f

    Article  Google Scholar 

  10. Hagiwara M, Kawahara T, Arai F (2012) Local streamline generation by mechanical oscillation in a microfluidic chip for noncontact cell manipulations. Appl Phys Lett 101:074102. doi:10.1063/1.4746247

    Article  Google Scholar 

  11. Han S-I, Joo Y-D, Han K-H (2013) An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation. Analyst 138:1529–1537. doi:10.1039/c3an36261b

    Article  Google Scholar 

  12. Hu J (2014) Ultrasonic micro/nano manipulations: principles and examples. World Scientific, Singapore

    Book  Google Scholar 

  13. Kaigala GV, Lovchik RD, Delamarche E (2012) Microfluidics in the “open space” for performing localized chemistry on biological interfaces. Angew Chem Int Ed Engl 51:11224–11240. doi:10.1002/anie.201201798

    Article  Google Scholar 

  14. Kollmann W, Umont G (2009) Formation of a recirculation zone in low re-number turbulence. Comput Fluids 38:1424–1434. doi:10.1016/j.compfluid.2008.01.037

    Article  MATH  Google Scholar 

  15. Leung C, Lu Z, Zhang XP, Sun Y (2012) Three-dimensional rotation of mouse embryos. IEEE Trans Biomed Eng 59:1049–1056. doi:10.1109/TBME.2012.2182995

    Article  Google Scholar 

  16. Liang YY-L, Huang Y-PY, Lu YY-S et al (2010) Cell rotation using optoelectronic tweezers. Biomicrofluidics 4:43003. doi:10.1063/1.3496357

    Article  Google Scholar 

  17. Lutz BRB, Chen J, Schwartz DTD (2006) Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Anal Chem 78:5429–5435. doi:10.1021/ac060555y

    Article  Google Scholar 

  18. Paterson L, MacDonald MP, Arlt J et al (2001) Controlled rotation of optically trapped microscopic particles. Science 292:912–914. doi:10.1126/science.1058591

    Article  Google Scholar 

  19. Sacconi L, Romano G, Ballerini R et al (2001) Three-dimensional magneto-optic trap for micro-object manipulation. Opt Lett 26:1359–1361

    Article  Google Scholar 

  20. Takeda N, Edagawa Y, Yamaguchi Y, Shoji S (2008) Microfluidic alignment system for single cell manipulation and culture. Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences, μTAS 2008, San Diego, California, pp 1855–1857

  21. Van Der Westerlaken La, Helmerhorst FM, Hermans J, Naaktgeboren N (1999) Intracytoplasmic sperm injection: position of the polar body affects pregnancy rate. Hum Reprod 14:2565–2569

    Article  Google Scholar 

  22. Yalikun Y, Akiyama Y, Hoshino T, Morishima K (2013) A bio-manipulation method based on the hydrodynamic force of multiple microfluidic streams. J Robot Mechatron 1:611–618

    Google Scholar 

Download references


This work was partly supported by JSPS KAKENHI Grant Nos. 21676002, 26249027, and 26560210, 15K11918, the Fluid Power Technology Promotion Foundation, and the Sasagawa Scientific Research Grant, Japan Science Society. We thank Dr. Yasunori Shintani (Department of Medical Biochemistry, Osaka University Graduate School of Medicine) for offering us the shrimp and zebrafish oocytes.

Author information



Corresponding author

Correspondence to Keisuke Morishima.

Electronic supplementary material

Below is the link to the electronic supplementary material.


S.1. Side view showing vertical rotation of the oocyte by microscale vortex flow (MP4 894 kb)


S.2. Top view showing vertical rotation of the oocyte by microscale vortex flow (MP4 791 kb)


S.3. Rotation of the Xenopus oocyte, EB, brine shrimp oocyte, and zebrafish oocyte (MP4 3871 kb)

S.4. Capturing the Xenopus oocyte at different initial positions (1.04 and 1.52 mm from the activated orifice) (MP4 11877 kb)

S.1. Side view showing vertical rotation of the oocyte by microscale vortex flow (MP4 894 kb)

S.2. Top view showing vertical rotation of the oocyte by microscale vortex flow (MP4 791 kb)

S.3. Rotation of the Xenopus oocyte, EB, brine shrimp oocyte, and zebrafish oocyte (MP4 3871 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yalikun, Y., Kanda, Y. & Morishima, K. Hydrodynamic vertical rotation method for a single cell in an open space. Microfluid Nanofluid 20, 74 (2016).

Download citation


  • Hydrodynamic
  • Micro-recirculation zone
  • Vertical rotation
  • Open space
  • Manipulation
  • Single cell