Hydrodynamic vertical rotation method for a single cell in an open space

  • Yaxiaer Yalikun
  • Yasunari Kanda
  • Keisuke Morishima
Research Paper

Abstract

Rotation of a single cell is an indispensable cell manipulation technique for genetic studies and clinical applications. Conventional contact manipulation methods for rotation of a cell use complex control systems and tools, while conventional non-contact manipulation methods have limitations regarding the operating space or range of the rotated cell size. Here, we report on a convenient, non-contact, and open space method for a wide range of single cell sizes (micrometer scale to millimeter scale) rotating in a vertical plane (out-of-plane) of an open space. This method uses a vertical microscale recirculation zone for capturing and rotating the cell. We fabricated a micro-orifice on the surface of a microfluidic chip to generate the micro-recirculation zone and then carried out experiments on vertical rotations of Xenopus oocyte, embryoid body, brine shrimp oocyte, and zebrafish oocyte using this chip. We demonstrated the rotation of four types of cells in the vertical plane between the air–liquid interface and the top surface of the microfluidic chip; then, we conducted a simulation to analyze the dynamics of the vertical rotation of the Xenopus oocyte qualitatively. Our results indicated rotation speed of the four types of cells was controllable by the micro-recirculation zone. The size and density of oocytes also affected the process of capturing and rotation. We expect this method opens new research opportunities in three-dimensional cell manipulation, imaging, and analysis.

Keywords

Hydrodynamic Micro-recirculation zone Vertical rotation Open space Manipulation Single cell 

Supplementary material

10404_2016_1737_MOESM1_ESM.mp4 (894 kb)
S.1. Side view showing vertical rotation of the oocyte by microscale vortex flow (MP4 894 kb)
10404_2016_1737_MOESM2_ESM.mp4 (791 kb)
S.2. Top view showing vertical rotation of the oocyte by microscale vortex flow (MP4 791 kb)
10404_2016_1737_MOESM3_ESM.mp4 (3.8 mb)
S.3. Rotation of the Xenopus oocyte, EB, brine shrimp oocyte, and zebrafish oocyte (MP4 3871 kb)

S.4. Capturing the Xenopus oocyte at different initial positions (1.04 and 1.52 mm from the activated orifice) (MP4 11877 kb)

References

  1. Arakawa T, Noguchi M, Sumitomo K et al (2011) High-throughput single-cell manipulation system for a large number of target cells. Biomicrofluidics 5:14114. doi:10.1063/1.3567101 CrossRefGoogle Scholar
  2. Beddington R, Gertsenstein M, Kristina Vintesten Nagy, Andras N (1999) Manipulating the mouse embryo: a laboratory manual, 4th edn. Cold Spring Harbor, New YorkGoogle Scholar
  3. Benhal P, Chase JG, Gaynor P et al (2014) AC electric field induced dipole-based on-chip 3D cell rotation. Lab Chip 14:2717–2727. doi:10.1039/c4lc00312h CrossRefGoogle Scholar
  4. Bhagat AAS, Hou HW, Li LD et al (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11:1870–1878. doi:10.1039/c0lc00633e CrossRefGoogle Scholar
  5. Elbez R, McNaughton BH, Patel L, et al (2011) Nanoparticle induced cell magneto-rotation: monitoring morphology, stress and drug sensitivity of a suspended single cancer cell. PLoS One. doi: 10.1371/journal.pone.0028475
  6. Fuhr G, Müller T, Schnelle T, Hagedorn R (1994) Radio-frequency microtools for particle and live cell manipulation. Naturwissenschaften 81:528–535CrossRefGoogle Scholar
  7. Gianaroli L (2000) Preimplantation genetic diagnosis: polar body and embryo biopsy. Hum Reprod 15(Suppl 4):69–75CrossRefGoogle Scholar
  8. Grier DG (2003) A revolution in optical manipulation. Nature 424:810–816. doi:10.1038/nature01935 CrossRefGoogle Scholar
  9. Hagiwara M, Kawahara T, Yamanishi Y et al (2011) On-chip magnetically actuated robot with ultrasonic vibration for single cell manipulations. Lab Chip 11:2049–2054. doi:10.1039/c1lc20164f CrossRefGoogle Scholar
  10. Hagiwara M, Kawahara T, Arai F (2012) Local streamline generation by mechanical oscillation in a microfluidic chip for noncontact cell manipulations. Appl Phys Lett 101:074102. doi:10.1063/1.4746247 CrossRefGoogle Scholar
  11. Han S-I, Joo Y-D, Han K-H (2013) An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation. Analyst 138:1529–1537. doi:10.1039/c3an36261b CrossRefGoogle Scholar
  12. Hu J (2014) Ultrasonic micro/nano manipulations: principles and examples. World Scientific, SingaporeCrossRefGoogle Scholar
  13. Kaigala GV, Lovchik RD, Delamarche E (2012) Microfluidics in the “open space” for performing localized chemistry on biological interfaces. Angew Chem Int Ed Engl 51:11224–11240. doi:10.1002/anie.201201798 CrossRefGoogle Scholar
  14. Kollmann W, Umont G (2009) Formation of a recirculation zone in low re-number turbulence. Comput Fluids 38:1424–1434. doi:10.1016/j.compfluid.2008.01.037 CrossRefMATHGoogle Scholar
  15. Leung C, Lu Z, Zhang XP, Sun Y (2012) Three-dimensional rotation of mouse embryos. IEEE Trans Biomed Eng 59:1049–1056. doi:10.1109/TBME.2012.2182995 CrossRefGoogle Scholar
  16. Liang YY-L, Huang Y-PY, Lu YY-S et al (2010) Cell rotation using optoelectronic tweezers. Biomicrofluidics 4:43003. doi:10.1063/1.3496357 CrossRefGoogle Scholar
  17. Lutz BRB, Chen J, Schwartz DTD (2006) Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Anal Chem 78:5429–5435. doi:10.1021/ac060555y CrossRefGoogle Scholar
  18. Paterson L, MacDonald MP, Arlt J et al (2001) Controlled rotation of optically trapped microscopic particles. Science 292:912–914. doi:10.1126/science.1058591 CrossRefGoogle Scholar
  19. Sacconi L, Romano G, Ballerini R et al (2001) Three-dimensional magneto-optic trap for micro-object manipulation. Opt Lett 26:1359–1361CrossRefGoogle Scholar
  20. Takeda N, Edagawa Y, Yamaguchi Y, Shoji S (2008) Microfluidic alignment system for single cell manipulation and culture. Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences, μTAS 2008, San Diego, California, pp 1855–1857Google Scholar
  21. Van Der Westerlaken La, Helmerhorst FM, Hermans J, Naaktgeboren N (1999) Intracytoplasmic sperm injection: position of the polar body affects pregnancy rate. Hum Reprod 14:2565–2569CrossRefGoogle Scholar
  22. Yalikun Y, Akiyama Y, Hoshino T, Morishima K (2013) A bio-manipulation method based on the hydrodynamic force of multiple microfluidic streams. J Robot Mechatron 1:611–618Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yaxiaer Yalikun
    • 1
  • Yasunari Kanda
    • 2
  • Keisuke Morishima
    • 1
    • 3
  1. 1.Department of Mechanical EngineeringOsaka UniversitySuitaJapan
  2. 2.Division of PharmacologyNational Institute of Health SciencesSetagaya-kuJapan
  3. 3.The Center for Advanced Medical Engineering and InformaticsOsaka UniversitySuitaJapan

Personalised recommendations