Advertisement

Wicking through a confined micropillar array

  • Baptiste Darbois Texier
  • Philippe Laurent
  • Serguei Stoukatch
  • Stéphane DorboloEmail author
Research Paper

Abstract

This study considers the spreading of a Newtonian and perfectly wetting liquid in a square array of cylindric micropillars confined between two plates. We show experimentally that the dynamics of the contact line follows a Washburn-like law which depends on the characteristics of the micropillar array (height, diameter and pitch). The presence of pillars can either enhance or slow down the motion of the contact line. A theoretical model based on capillary and viscous forces has been developed in order to rationalize our observations. Finally, the impact of pillars on the volumic flow rate of liquid which is pumped in the microchannel is inspected.

Keywords

Microchannel wicking Micropillar array Liquid impregnation 

Notes

Acknowledgments

This research has been funded by the Inter-university Attraction Poles Programme (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office. SD thanks the FNRS for financial support. We acknowledge Mathilde Reyssat, Tristan Gilet and Pierre Colinet for fruitful discussions and valuable comments. We are grateful to Stéphanie Van Loo for precious advices concerning the realization of the PDMS microchannels.

References

  1. Bocquet L, Barrat JL (2007) Flow boundary conditions from nano-to micro-scales. Soft Matter 3(6):685–693CrossRefGoogle Scholar
  2. Del Campo A, Greiner C (2007) Su-8: a photoresist for high-aspect-ratio and 3d submicron lithography. J Micromech Microeng 17(6):R81CrossRefGoogle Scholar
  3. Folch A, Ayon A, Hurtado O, Schmidt M, Toner M (1999) Molding of deep polydimethylsiloxane microstructures for microfluidics and biological applications. J Biomech Eng 121(1):28–34CrossRefGoogle Scholar
  4. Gamrat G, Favre-Marinet M, Le Person S, Baviere R, Ayela F (2008) An experimental study and modelling of roughness effects on laminar flow in microchannels. J Fluid Mech 594:399–423CrossRefzbMATHGoogle Scholar
  5. Gunda N, Joseph J, Tamayol A, Akbari M, Mitra S (2013) Measurement of pressure drop and flow resistance in microchannels with integrated micropillars. Microfluidics Nanofluidics 14(3–4):711–721CrossRefGoogle Scholar
  6. Hale R, Bonnecaze R, Hidrovo C (2014a) Optimization of capillary flow through square micropillar arrays. Int J Multiph Flow 58:39–51MathSciNetCrossRefGoogle Scholar
  7. Hale R, Ranjan R, Hidrovo C (2014b) Capillary flow through rectangular micropillar arrays. Int J Heat Mass Transf 75:710–717CrossRefGoogle Scholar
  8. Ishino C, Reyssat M, Reyssat E, Okumura K, Quere D (2007) Wicking within forests of micropillars. EPL (Europhys Lett) 79(5):56,005CrossRefGoogle Scholar
  9. Kim S, Moon MW, Lee KR, Lee DY, Chang Y, Kim HY (2011) Liquid spreading on superhydrophilic micropillar arrays. J Fluid Mech 680:477–487CrossRefzbMATHGoogle Scholar
  10. Kissa E (1996) Wetting and wicking. Text Res J 66(10):660–668CrossRefGoogle Scholar
  11. Mai T, Lai C, Zheng H, Balasubramanian K, Leong K, Lee P, Lee C, Choi W (2012) Dynamics of wicking in silicon nanopillars fabricated with interference lithography and metal-assisted chemical etching. Langmuir 28(31):11,465–11,471CrossRefGoogle Scholar
  12. Mognetti B, Yeomans J (2009) Capillary filling in microchannels patterned by posts. Phys Rev E 80(5):056,309CrossRefGoogle Scholar
  13. Mohammadi A, Floryan J (2013) Pressure losses in grooved channels. J Fluid Mech 725:23–54MathSciNetCrossRefzbMATHGoogle Scholar
  14. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239CrossRefGoogle Scholar
  15. Sadiq T, Advani S, Parnas R (1995) Experimental investigation of transverse flow through aligned cylinders. Int J Multiph Flow 21(5):755–774CrossRefzbMATHGoogle Scholar
  16. Op de Beeck J, De Malsche W, Tezcan D, De Moor P, Desmet G (2012) Impact of the limitations of state-of-the-art micro-fabrication processes on the performance of pillar array columns for liquid chromatography. J Chromatogr A 1239:35–48CrossRefGoogle Scholar
  17. Schwiebert MK, Leong WH (1996) Underfill flow as viscous flow between parallel plates driven by capillary action. Compon Packag Manuf Technol Part C IEEE Trans 19(2):133–137CrossRefGoogle Scholar
  18. Semprebon C, Forsberg P, Priest C, Brinkmann M (2014) Pinning and wicking in regular pillar arrays. Soft Matter 10(31):5739–5748CrossRefGoogle Scholar
  19. Spruijt E, Le Guludec E, Lix C, Wagner M (2015) Liquid filmification from menisci. EPL (Europhys Lett) 112(1):16,002CrossRefGoogle Scholar
  20. Tamayol A, Bahrami M (2009) Analytical determination of viscous permeability of fibrous porous media. Int J Heat Mass Transf 52(9):2407–2414CrossRefzbMATHGoogle Scholar
  21. Tamayol A, Yeom J, Akbari M, Bahrami M (2013) Low reynolds number flows across ordered arrays of micro-cylinders embedded in a rectangular micro/minichannel. Int J Heat Mass Transf 58(1):420–426CrossRefGoogle Scholar
  22. Thompson P, Robbins M (1989) Simulations of contact-line motion: slip and the dynamic contact angle. Phys Rev Lett 63(7):766CrossRefGoogle Scholar
  23. Tien C, Sun K (1971) Minimum meniscus radius of heat pipe wicking materials. Int J Heat Mass Transf 14(11):1853–1855CrossRefGoogle Scholar
  24. Vangelooven J, De Malsche W, De Beeck JO, Eghbali H, Gardeniers H, Desmet G (2010) Design and evaluation of flow distributors for microfabricated pillar array columns. Lab Chip 10(3):349–356CrossRefGoogle Scholar
  25. Wan J, Zhang WJ, Bergstrom D (2008) Experimental verification of models for underfill flow driven by capillary forces in flip-chip packaging. Microelectron Reliab 48(3):425–430CrossRefGoogle Scholar
  26. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273CrossRefGoogle Scholar
  27. Xiao R, Wang EN (2011) Microscale liquid dynamics and the effect on macroscale propagation in pillar arrays. Langmuir 27(17):10,360–10,364CrossRefGoogle Scholar
  28. Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7(1):119–125CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Baptiste Darbois Texier
    • 1
  • Philippe Laurent
    • 2
  • Serguei Stoukatch
    • 2
  • Stéphane Dorbolo
    • 1
    Email author
  1. 1.Grasp, Physics DepartmentULgLiègeBelgium
  2. 2.Microsys, Montefiore InstituteULgLiègeBelgium

Personalised recommendations