Automated droplet measurement (ADM): an enhanced video processing software for rapid droplet measurements

  • Zhuang Zhi Chong
  • Shu Beng TorEmail author
  • Alfonso M. Gañán-Calvo
  • Zhuang Jie Chong
  • Ngiap Hiang Loh
  • Nam-Trung NguyenEmail author
  • Say Hwa TanEmail author
Research Paper


This paper identifies and addresses the bottlenecks that hamper the currently available software to perform in situ measurement on droplet-based microfluidic. The new and more universal object-based background extraction operation and automated binary threshold value selection make the processing step of our video processing software (ADM) fully automated. The ADM software, which is based on OpenCV image processing library, is made to perform measurements with high processing speed using efficient code. As the processing speed is higher than the data transfer speed from the video camera to permanent storage of computer, we integrate the camera software development kit (SDK) with ADM. The integration allows simultaneous operations of the video transfer/streaming and the video processing. As a result, the total time for droplet measurement using the new process flow with the integrated program is shortened significantly. ADM is also validated by comparing with both manual analysis and DMV software. ADM will be publicly released as a free tool. The software can also be used on a video file or files without the integration with the camera SDK.


Droplet measurement Video processing OpenCV Automated measurement 



The authors gratefully acknowledge the research support from the Singapore-MIT Alliance (SMA) program in Manufacturing Systems and Technology (MST) and the Singapore Ministry of Education (MOE) Tier 2 Grant (No. 2011-T2-1-0-36). Z.Z. Chong would also want to thank the support of Nanyang Technological University Research Scholarship.


  1. ADM (2015) Adm website. Accessed 01 July 2015
  2. Basu AS (2013) Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters. Lab Chip 13(10):1892CrossRefGoogle Scholar
  3. Bradski G (2008) Learning OpenCV: computer vision with the OpenCV library. O’Reilly, SebastopolGoogle Scholar
  4. Brouzesa E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci USA 106(34):14,195–14,200CrossRefGoogle Scholar
  5. Castro-Hernández E, García-Sánchez P, Tan SH, Gañán-Calvo AM, Baret JC, Ramos A (2015) Breakup length of AC electrified jets in a microfluidic flow-focusing junction. Microfluid Nanofluid 19(4):787–794CrossRefGoogle Scholar
  6. Chen CH, Shah RK, Abate AR, Weitz DA (2009) Janus particles templated from double emulsion droplets generated using microfluidics. Langmuir 25(8):4320–4323CrossRefGoogle Scholar
  7. Chong ZZ, Tor SB, Loh NH, Wong TN, Gañán-Calvo AM, Tan SH, Nguyen NT (2015) Acoustofluidic control of bubble size in microfluidic flow-focusing configuration. Lab Chip 15(4):996–999CrossRefGoogle Scholar
  8. Chong ZZ, Tan SH, Gañán-Calvo AM, Tor SB, Loh NH, Nguyen NT (2016) Active droplet generation in microfluidics. Lab Chip 16(1):35–58. doi: 10.1039/c5lc01012h CrossRefGoogle Scholar
  9. Dubinsky S, Zhang H, Nie Z, Gourevich I, Voicu D, Deetz M, Kumacheva E (2008) Microfluidic synthesis of macroporous copolymer particles. Macromolecules 41(10):3555–3561CrossRefGoogle Scholar
  10. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984. doi: 10.1021/ac980656z CrossRefGoogle Scholar
  11. Gavrilova ML, Monwar M (2013) Multimodal biometrics and intelligent image processing for security systems. IGI Global, HersheyCrossRefGoogle Scholar
  12. Gunther A, Jensen KF (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6(12):1487CrossRefGoogle Scholar
  13. Hong Y, Wang F (2006) Flow rate effect on droplet control in a co-flowing microfluidic device. Microfluid Nanofluid 3(3):341–346MathSciNetCrossRefGoogle Scholar
  14. Izquierdo-Guerra W, García-Reyes E (2010) Background division, a suitable technique for moving object detection. In: Progress in pattern recognition, image analysis, computer vision, and applications. Springer Science Media, pp 121–127Google Scholar
  15. Kintses B, van Vliet LD, Devenish SR, Hollfelder F (2010) Microfluidic droplets: new integrated workflows for biological experiments. Curr Opin Chem Biol 14(5):548–555CrossRefGoogle Scholar
  16. Konry T, Golberg A, Yarmush M (2013) Live single cell functional phenotyping in droplet nano-liter reactors. Sci Rep 3. doi: 10.1038/srep03179
  17. Li L, Braiteh FS, Kurzrock R (2005) Liposome-encapsulated curcumin. Cancer 104(6):1322–1331CrossRefGoogle Scholar
  18. Matuska S, Hudec R, Benco M (2012) The comparison of CPU time consumption for image processing algorithm in Matlab and OpenCV. In: 2012 ELEKTRO, Institute of Electrical and Electronics Engineers (IEEE)Google Scholar
  19. Najah M, Calbrix R, Mahendra-Wijaya P, Beneyton T, Griffiths AD, Drevelle A (2014) Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms. Chem Biol 21:1722–1732CrossRefGoogle Scholar
  20. Nie Z, Li W, Seo M, Xu S, Kumacheva E (2006) Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 128(29):9408–9412CrossRefGoogle Scholar
  21. Nuno-Maganda MA, Morales-Sandoval M, Torres-Huitzil C (2011) A hardware coprocessor integrated with OpenCV for edge detection using cellular neural networks. In: 2011 sixth international conference on image and graphics. Institute of Electrical and Electronics Engineers (IEEE)Google Scholar
  22. Schmid L, Franke T (2013) SAW-controlled drop size for flow focusing. Lab Chip 13(9):1691CrossRefGoogle Scholar
  23. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45(44):7336–7356CrossRefGoogle Scholar
  24. Tan SH, Nguyen NT (2011) Generation and manipulation of monodispersed ferrofluid emulsions: the effect of a uniform magnetic field in flow-focusing and t-junction configurations. Phys RevE 84(3):p 036317. doi: 10.1103/PhysRevE.84.036317 Google Scholar
  25. Tan SH, Murshed SMS, Nguyen NT, Wong TN, Yobas L (2008) Thermally controlled droplet formation in flow focusing geometry: formation regimes and effect of nanoparticle suspension. J Phys D Appl Phys 41(16):165,501CrossRefGoogle Scholar
  26. Tan SH, Nguyen NT, Yobas L, Kang TG (2010) Formation and manipulation of ferrofluid droplets at a microfluidic t-junction. J Micromech Microeng 20(4):045,004CrossRefGoogle Scholar
  27. Tan SH, Maes F, Semin B, Vrignon J, Baret JC (2014a) The microfluidic jukebox. Sci Rep 4. doi: 10.1038/srep04787
  28. Tan SH, Semin B, Baret JC (2014b) Microfluidic flow-focusing in ac electric fields. Lab Chip 14(6):1099CrossRefGoogle Scholar
  29. van Steijn V, Kleijn CR, Kreutzer MT (2010) Predictive model for the size of bubbles and droplets created in microfluidic t-junctions. Lab Chip 10(19):2513CrossRefGoogle Scholar
  30. Wan J (2012) Microfluidic-based synthesis of hydrogel particles for cell microencapsulation and cell-based drug delivery. Polymers 4(4):1084–1108CrossRefGoogle Scholar
  31. Yap YF, Tan SH, Nguyen NT, Murshed SMS, Wong TN, Yobas L (2009) Thermally mediated control of liquid microdroplets at a bifurcation. J Phys D Appl Phys 42(6):065,503CrossRefGoogle Scholar
  32. Yu H, Chong ZZ, Tor SB, Liu E, Loh NH (2014) Low temperature and deformation-free bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treatment and PVA coating. RSC Adv 5(11):8377–8388CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.QLD Micro- and Nanotechnology Centre, Nathan CampusGriffith UniversityNathanAustralia
  3. 3.Depto. de Ingeniería Aeroespacial y Mecánica de FluidosUniversidad de SevillaSevillaSpain
  4. 4.Singapore-MIT Alliance for Research and TechnologySingaporeSingapore

Personalised recommendations