Advertisement

3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications

  • Alireza Ahmadian Yazdi
  • Adam Popma
  • William Wong
  • Tammy Nguyen
  • Yayue Pan
  • Jie Xu
Review

Abstract

In the past few years, 3D printing technology has witnessed an explosive growth, penetrating various aspects of our lives. Current best-in-class 3D printers can fabricate micrometer scale objects, which has made fabrication of microfluidic devices possible. The highest achievable resolution is already at nanometer scale, which is continuing to drop. Since geometric complexity is not a concern for 3D printing, novel 3D microfluidics and lab-on-a-chip systems that are otherwise impossible to produce with traditional 2D microfabrication technology have started to emerge in recent years. In this review, we first introduce the basics of 3D printing technology for the microfluidic community and then summarize its emerging applications in creating novel microfluidic devices. We foresee widespread utilization of 3D printing for future developments in microfluidic engineering and lab-on-a-chip technology.

Keywords

3D printing Additive manufacturing Microfluidics Lab-on-a-chip 

Notes

Acknowledgments

This work has been supported by a University of Illinois at Chicago Curriculum and Instruction Grant.

References

  1. Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80(18):6928–6934CrossRefGoogle Scholar
  2. Aghaamoo M, Zhang Z, Chen X, Xu J (2015) Deformability-based circulating tumor cell separation with conical-shaped microfilters: concept, optimization, and design criteria. Biomicrofluidics 9(3):034106CrossRefGoogle Scholar
  3. Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. CIRP Ann Manuf Technol 52(2):635–657CrossRefGoogle Scholar
  4. Anderson KB, Lockwood SY, Martin RS, Spence DM (2013) A 3D printed fluidic device that enables integrated features. Anal Chem 85(12):5622–5626CrossRefGoogle Scholar
  5. Asproulis N, Kalweit M, Drikakis D (2012) A hybrid molecular continuum method using point wise coupling. Adv Eng Softw 46(1):85–92CrossRefGoogle Scholar
  6. Au AK, Lee W, Folch A (2014) Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip 14(7):1294–1301CrossRefGoogle Scholar
  7. Au AK, Bhattacharjee N, Horowitz LF, Chang TC, Folch A (2015) 3D-printed microfluidic automation. Lab Chip 15(8):1934–1941CrossRefGoogle Scholar
  8. Barry R, Ivanov D (2004) Microfluidics in biotechnology. J Nanobiotechnol 2(1):2CrossRefGoogle Scholar
  9. Bartolo P, Gaspar J (2008) Metal filled resin for stereolithography metal part. CIRP Ann Manuf Technol 57(1):235–238CrossRefGoogle Scholar
  10. Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56(2):267–287CrossRefGoogle Scholar
  11. Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4(1):261–286CrossRefGoogle Scholar
  12. Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55(2):155–162CrossRefGoogle Scholar
  13. Bertsch A, Lorenz H, Renaud P (1998) Combining microstereolithography and thick resist UV lithography for 3D microfabrication. In: Proceedings of the eleventh annual international workshop on micro electro mechanical systems, 1998 (MEMS 98). IEEE, pp 18–23Google Scholar
  14. Beuret C, Racine G, Gobet J, Luthier R, De Rooij N (1994) Microfabrication of 3D multidirectional inclined structures by UV lithography and electroplating. In: Proceedings of the IEEE workshop on micro electro mechanical systems, 1994 (MEMS’94). IEEE, pp 81–85Google Scholar
  15. Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT (2010) Microfluidics for cell separation. Med Biol Eng Comput 48(10):999–1014CrossRefGoogle Scholar
  16. Bhagat AAS, Hou HW, Li LD, Lim CT, Han J (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11(11):1870–1878CrossRefGoogle Scholar
  17. Bhargava KC, Thompson B, Malmstadt N (2014) Discrete elements for 3D microfluidics. Proc Natl Acad Sci 111(42):15013–15018CrossRefGoogle Scholar
  18. Bonyár A, Sántha H, Ring B, Varga M, Kovács JG, Harsányi G (2010) 3D rapid prototyping technology (RPT) as a powerful tool in microfluidic development. Procedia Eng 5:291–294CrossRefGoogle Scholar
  19. Bourell DL, Leu MC, Rosen DW (2009) Roadmap for additive manufacturing: identifying the future of freeform processing. The University of Texas at Austin, AustinGoogle Scholar
  20. Bourell D, Stucker B, Chen Y, Zhou C, Lao J (2011) A layerless additive manufacturing process based on CNC accumulation. Rapid Prototyp J 17(3):218–227CrossRefGoogle Scholar
  21. Burns M (1993) Automated fabrication: improving productivity in manufacturing. Prentice-Hall Inc, Englewood CliffsGoogle Scholar
  22. Campbell I, Bourell D, Gibson I (2012) Additive manufacturing: rapid prototyping comes of age. Rapid Prototyp J 18(4):255–258CrossRefGoogle Scholar
  23. Chan CY, Huang P-H, Guo F, Ding X, Kapur V, Mai JD, Yuen PK, Huang TJ (2013) Accelerating drug discovery via organs-on-chips. Lab Chip 13(24):4697–4710CrossRefGoogle Scholar
  24. Chan HN, Chen Y, Shu Y, Chen Y, Tian Q, Wu H (2015) Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips. Microfluid Nanofluid 19(1):9–18CrossRefGoogle Scholar
  25. Cheng Y-L, Lee M-L (2009) Development of dynamic masking rapid prototyping system for application in tissue engineering. Rapid Prototyp J 15(1):29–41CrossRefGoogle Scholar
  26. Choi J, Chang Y (2006) Analysis of laser control effects for direct metal deposition Process. J Mech Sci Technol 20(10):1680–1690CrossRefGoogle Scholar
  27. Choi JW, Ha YM, Lee SH, Choi KH (2006) Design of microstereolithography system based on dynamic image projection for fabrication of three-dimensional microstructures. J Mech Sci Technol 20(12):2094–2104CrossRefGoogle Scholar
  28. Choi J-W, Wicker R, Lee S-H, Choi K-H, Ha C-S, Chung I (2009) Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Technol 209(15):5494–5503CrossRefGoogle Scholar
  29. Clare AT, Chalker PR, Davies S, Sutcliffe CJ, Tsopanos S (2008) Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications. Int J Mech Mater Des 4(2):181–187CrossRefGoogle Scholar
  30. Cohen A, Zhang G, Tseng F-G, Frodis U, Mansfeld F, Will P (1999) EFAB: rapid, low-cost desktop micromachining of high aspect ratio true 3-D MEMS. In: Twelfth IEEE international conference on micro electro mechanical systems, 1999 (MEMS’99). IEEE, pp 244–251Google Scholar
  31. Comina G, Suska A, Filippini D (2013) PDMS lab-on-a-chip fabrication using 3D printed templates. Lab Chip 14(2):424–430CrossRefGoogle Scholar
  32. Crump SS (1991) Fast, precise, safe prototypes with FDM. In: ASME annual winter conference, Atlanta, pp 53–60Google Scholar
  33. Dickens Jr ED, Lee BL, Taylor GA, Magistro AJ, Ng H (1999) Selective laser sintering. Google PatentsGoogle Scholar
  34. Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218CrossRefGoogle Scholar
  35. Do J, Ahn CH (2008) A polymer lab-on-a-chip for magnetic immunoassay with on-chip sampling and detection capabilities. Lab Chip 8(4):542–549CrossRefGoogle Scholar
  36. Dutta B, Palaniswamy S, Choi J, Song L, Mazumder J (2011) Additive manufacturing by direct metal deposition. Adv Mater Process 169(5):33–36Google Scholar
  37. Ehrfeld W, Schmidt A (1998) Recent developments in deep X-ray lithography. J Vac Sci Technol, B 16(6):3526–3534CrossRefGoogle Scholar
  38. EnvisionTEC (2014). http://www.envisiontec.com. Accessed 1 Dec 2015
  39. Esposito A (1969) A simplified method for analyzing hydraulic circuits by analogy. Mach Des 41(24):173Google Scholar
  40. Fan L-L, He X-K, Han Y, Zhe J, Zhao L (2015) Continuous 3D particle focusing in a microchannel with curved and symmetric sharp corner structures. J Micromech Microeng 25(3):035020CrossRefGoogle Scholar
  41. Fang J, Wang W, Zhao S (2015) Fabrication of 3D microfluidic structures. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer, Berlin, pp 1069–1082Google Scholar
  42. Folch A (2012) Introduction to BioMEMS. CRC Press, Boca RatonGoogle Scholar
  43. French P, Sarro P (1998) Surface versus bulk micromachining: the contest for suitable applications. J Micromech Microeng 8(2):45CrossRefGoogle Scholar
  44. Galajda P, Ormos P (2001) Complex micromachines produced and driven by light. Appl Phys Lett 78(2):249–251CrossRefGoogle Scholar
  45. Galambos PC, Okandan M, Montague S, Smith JH, Paul PH, Krygowski TW, Allen JJ, Nichols CA, Jerome FJI (2004) Surface-micromachined microfluidic devices. Google PatentsGoogle Scholar
  46. Gershenfeld N (2012) How to make almost anything: the digital fabrication revolution. Foreign Aff 91:43Google Scholar
  47. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, BerlinCrossRefGoogle Scholar
  48. Gonçalves EM, Oliveira FJ, Silva RF, Neto MA, Fernandes MH, Amaral M, Vallet-Regí M, Vila M (2015) Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J Biomed Mater Res B Appl Biomater. doi: 10.1002/jbm.b.33432 Google Scholar
  49. Gong X, Anderson T, Chou K (2012) Review on powder-based electron beam additive manufacturing technology. In: ASME/ISCIE 2012 international symposium on flexible automation, 2012. American Society of Mechanical Engineers, pp 507–515Google Scholar
  50. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7):3240–3253CrossRefGoogle Scholar
  51. Guckenberger DJ, de Groot TE, Wan AM, Beebe DJ, Young EW (2015) Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15(11):2364–2378CrossRefGoogle Scholar
  52. Guo L, Feng J, Fang Z, Xu J, Lu X (2015) Application of microfluidic “lab-on-a-chip” for the detection of mycotoxins in foods. Trends Food Sci Technol 46(2):252–263CrossRefGoogle Scholar
  53. Hanada Y, Sugioka K, Kawano H, Ishikawa IS, Miyawaki A, Midorikawa K (2008) Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed Microdevices 10(3):403–410CrossRefGoogle Scholar
  54. Hashmi A, Xu J (2014) On the quantification of mixing in microfluidics. J Lab Autom 19(5):488–491CrossRefGoogle Scholar
  55. Hashmi A, Heiman G, Yu G, Lewis M, Kwon H-J, Xu J (2013) Oscillating bubbles in teardrop cavities for microflow control. Microfluid Nanofluid 14(3–4):591–596CrossRefGoogle Scholar
  56. Hashmi A, Yu G, Reilly-Collette M, Heiman G, Xu J (2012) Oscillating bubbles: a versatile tool for lab on a chip applications. Lab Chip 12(21):4216–4227CrossRefGoogle Scholar
  57. He Y, Qiu J, Fu J, Zhang J, Ren Y, Liu A (2015) Printing 3D microfluidic chips with a 3D sugar printer. Microfluid Nanofluid 19(2):447–456CrossRefGoogle Scholar
  58. Heckele M, Schomburg W (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14(3):R1CrossRefGoogle Scholar
  59. Ho CMB, Ng SH, Li KHH, Yoon Y-J (2015) 3D printed microfluidics for biological applications. Lab Chip 15(18):3627–3637CrossRefGoogle Scholar
  60. Hong JW, Quake SR (2003) Integrated nanoliter systems. Nat Biotechnol 21(10):1179–1183CrossRefGoogle Scholar
  61. Hopkinson N, Hague R, Dickens P (2006) Rapid manufacturing: an industrial revolution for the digital age. Wiley, New YorkGoogle Scholar
  62. Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67(5–8):1191–1203CrossRefGoogle Scholar
  63. Hutchinson R, Fleck N (2006) The structural performance of the periodic truss. J Mech Phys Solids 54(4):756–782MathSciNetzbMATHCrossRefGoogle Scholar
  64. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55(2):203–216CrossRefGoogle Scholar
  65. Hwang S, Reyes EI, K-s Moon, Rumpf RC, Kim NS (2015) Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J Electron Mater 44(3):771–777CrossRefGoogle Scholar
  66. Ikuta K, Ogata T, Tsubio M, Kojima S (1996) Development of mass productive micro stereo lithography (Mass-IH Process). In: IEEE proceedings of the ninth annual international workshop on micro electro mechanical systems, 1996 (MEMS’96). An investigation of micro structures, sensors, actuators, machines and systems. IEEE. IEEE, pp 301–306Google Scholar
  67. Jackson B, Wood K, Beaman J (2000) Discrete multi-material selective laser sintering (M 2 SLS): development for an application in complex sand casting core arrays. Proc Solid Freeform Fabr 2000:176–182Google Scholar
  68. Justice BA, Badr NA, Felder RA (2009) 3D cell culture opens new dimensions in cell-based assays. Drug Discov Today 14(1):102–107CrossRefGoogle Scholar
  69. Kai CC, Fai LK, Chu-Sing L (2003) Rapid prototyping: principles and applications in manufacturing. World Scientific Publishing Co., Inc, SingaporeGoogle Scholar
  70. Kalweit M, Drikakis D (2008) Multiscale methods for micro/nano flows and materials. J Comput Theor Nanosci 5(9):1923–1938CrossRefGoogle Scholar
  71. Karniadakis G, Beskok A, Aluru N (2006) Microflows and nanoflows: fundamentals and simulation, vol 29. Springer Science & Business Media, New YorkzbMATHGoogle Scholar
  72. Kawata S, Sun H-B, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412(6848):697–698CrossRefGoogle Scholar
  73. Keating S (2014) Beyond 3D printing: the new dimensions of additive fabrication. Designing for emerging technologies: UX for genomics, robotics, and the internet of things, pp 379Google Scholar
  74. Khalil S, Nam J, Sun W (2005) Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp J 11(1):9–17CrossRefGoogle Scholar
  75. King PH (2009) Towards rapid 3D direct manufacture of biomechanical microstructures. University of Warwick, CoventryGoogle Scholar
  76. Kitson PJ, Rosnes MH, Sans V, Dragone V, Cronin L (2012) Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’reactionware devices. Lab Chip 12(18):3267–3271CrossRefGoogle Scholar
  77. Klein GT, Lu Y, Wang MY (2013) 3D printing and neurosurgery—ready for prime time? World Neurosurg 80(3):233–235CrossRefGoogle Scholar
  78. Kruth J-P (1991) Material incress manufacturing by rapid prototyping techniques. CIRP Ann Manuf Technol 40(2):603–614CrossRefGoogle Scholar
  79. Kruth J-P, Leu M-C, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. CIRP Ann Manuf Technol 47(2):525–540CrossRefGoogle Scholar
  80. Kumar S, Kruth J-P (2010) Composites by rapid prototyping technology. Mater Des 31(2):850–856CrossRefGoogle Scholar
  81. Kwon H-J, Xu Y, Solovitz SA, Xue W, Dimitrov AG, Coffin AB, Xu J (2014) Design of a microfluidic device with a non-traditional flow profile for on-chip damage to zebrafish sensory cells. J Micromech Microeng 24(1):017001CrossRefGoogle Scholar
  82. Ladd C, So JH, Muth J, Dickey MD (2013) 3D printing of free standing liquid metal microstructures. Adv Mater 25(36):5081–5085CrossRefGoogle Scholar
  83. Lee MP, Cooper GJ, Hinkley T, Gibson GM, Padgett MJ, Cronin L (2015) Development of a 3D printer using scanning projection stereolithography. Sci Rep 5:9875CrossRefGoogle Scholar
  84. Li X, Liu X (2014) Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper. Microfluid Nanofluid 16(5):819–827CrossRefGoogle Scholar
  85. Liew C, Leong K, Chua C, Du Z (2001) Dual material rapid prototyping techniques for the development of biomedical devices. Part 1: space creation. Int J Adv Manuf Technol 18(10):717–723CrossRefGoogle Scholar
  86. Liew CL, Leong K, Chua C, Du Z (2002) Dual material rapid prototyping techniques for the development of biomedical devices. Part 2: secondary powder deposition. Int J Adv Manuf Technol 19(9):679–687CrossRefGoogle Scholar
  87. Lin G, Pister KS, Roos KP (2000) Surface micromachined polysilicon heart cell force transducer. Microelectromech Syst J 9(1):9–17CrossRefGoogle Scholar
  88. Liou A-C, Chen R-H (2006) Injection molding of polymer micro-and sub-micron structures with high-aspect ratios. Int J Adv Manuf Technol 28(11–12):1097–1103CrossRefGoogle Scholar
  89. Malek CGK (2006) Laser processing for bio-microfluidics applications (part II). Anal Bioanal Chem 385(8):1362–1369CrossRefGoogle Scholar
  90. Maruo S, Kawata S (1998) Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication. Microelectromech Syst J 7(4):411–415CrossRefGoogle Scholar
  91. Mason A (2006) Multi-axis hybrid rapid prototyping using fusion deposition modeling. ProQuest, An ArborGoogle Scholar
  92. Michalski MH, Ross JS (2014) The shape of things to come: 3D printing in medicine. JAMA 312(21):2213–2214CrossRefGoogle Scholar
  93. Milewski J, Lewis G, Thoma D, Keel G, Nemec R, Reinert R (1998) Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition. J Mater Process Technol 75(1):165–172CrossRefGoogle Scholar
  94. Mitra SK, Chakraborty S (2011) Microfluidics and nanofluidics handbook: fabrication, implementation, and applications, vol 2. CRC Press, Boca RatonCrossRefGoogle Scholar
  95. Mitsouras D, Liacouras P, Imanzadeh A, Giannopoulos AA, Cai T, Kumamaru KK, George E, Wake N, Caterson EJ, Pomahac B (2015) Medical 3D printing for the radiologist. RadioGraphics 35(7):1965–1988CrossRefGoogle Scholar
  96. Moon SK, Tan YE, Hwang J, Yoon Y-J (2014) Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures. Int J Precis Eng Manuf Green Technol 1(3):223–228CrossRefGoogle Scholar
  97. Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Shindo PW, Medina FR, Wicker RB (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28(1):1–14CrossRefGoogle Scholar
  98. Ning X, Pellegrino S (2012) Design of lightweight structural components for direct digital manufacturing. In: 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA, 2012Google Scholar
  99. O’Connor J, Punch J, Jeffers N, Stafford J (2015) A comparison between the hydrodynamic characteristics of 3D-printed polymer and etched silicon microchannels. Microfluid Nanofluid 19(2):385–394CrossRefGoogle Scholar
  100. Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3):515–545CrossRefGoogle Scholar
  101. Okandan M, Galambos P, Mani SS, Jakubczak JF (2001) Development of surface micromachining technologies for microfluidics and BioMEMS. In: Micromachining and microfabrication, 2001. International society for optics and photonics, pp 133–139Google Scholar
  102. O’Neill P, Azouz AB, Vazquez M, Liu J, Marczak S, Slouka Z, Chang HC, Diamond D, Brabazon D (2014) Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications. Biomicrofluidics 8(5):052112CrossRefGoogle Scholar
  103. Pan Y, Zhao X, Zhou C, Chen Y (2012a) Smooth surface fabrication in mask projection based stereolithography. J Manuf Process 14(4):460–470CrossRefGoogle Scholar
  104. Pan Y, Zhou C, Chen Y (2012b) A fast mask projection Stereolithography process for fabricating digital models in minutes. J Manuf Sci Eng 134(5):051011CrossRefGoogle Scholar
  105. Pan Y, Zhou C, Chen Y, Partanen J (2014) Multitool and multi-axis computer numerically controlled accumulation for fabricating conformal features on curved surfaces. J Manuf Sci Eng 136(3):031007CrossRefGoogle Scholar
  106. Pan Y, Patil A, Zhou C (2015) A novel projection based electro-stereolithography (PES) process for composite printing. In: Annual solid freeform fabrication symposium, AustinGoogle Scholar
  107. Papakonstantinou P, Vainos N, Fotakis C (1999) Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films. Appl Surf Sci 151(3):159–170CrossRefGoogle Scholar
  108. Park SH, Lim TW, Yang D-Y, Cho NC, Lee K-S (2006) Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique. Appl Phys Lett 89(17):173133CrossRefGoogle Scholar
  109. Park SH, Yang DY, Lee KS (2009) Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser Photonics Rev 3(1–2):1–11CrossRefGoogle Scholar
  110. Park IB, Ha YM, Lee SH (2011) Dithering method for improving the surface quality of a microstructure in projection microstereolithography. Int J Adv Manuf Technol 52(5–8):545–553CrossRefGoogle Scholar
  111. Pascall AJ, Qian F, Wang G, Worsley MA, Li Y, Kuntz JD (2014) Light-directed electrophoretic deposition: a new additive manufacturing technique for arbitrarily patterned 3D composites. Adv Mater 26(14):2252–2256CrossRefGoogle Scholar
  112. Pham D, Gault R (1998) A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 38(10):1257–1287CrossRefGoogle Scholar
  113. Pryor S (2014) Implementing a 3D printing service in an academic library. J Libr Adm 54(1):1–10Google Scholar
  114. Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46(11):2396–2406CrossRefGoogle Scholar
  115. Rivera CM, Kwon H-J, Hashmi A, Yu G, Zhao J, Gao J, Xu J, Xue W, Dimitrov AG (2015) Towards a dynamic clamp for neurochemical modalities. Sensors 15(5):10465–10480CrossRefGoogle Scholar
  116. Rivera CM, Kwon H-J, Hashmi A, Yu G, Zhao J, Gao J, Xu J, Xue W, Dimitrov AG (2015) Towards a dynamic clamp for neurochemical modalities. Sensors 15(5):10465–10480 Rogers CI, Pagaduan JV, Nordin GP, Woolley AT (2011) Single-monomer formulation of polymerized polyethylene glycol diacrylate as a nonadsorptive material for microfluidics. Anal Chem 83(16):6418–6425CrossRefGoogle Scholar
  117. Rogers CI, Oxborrow JB, Anderson RR, Tsai L-F, Nordin GP, Woolley AT (2014) Microfluidic valves made from polymerized polyethylene glycol diacrylate. Sens Actuators B Chem 191:438–444CrossRefGoogle Scholar
  118. Rogers CI, Qaderi K, Woolley AT, Nordin GP (2015) 3D printed microfluidic devices with integrated valves. Biomicrofluidics 9(1):016501CrossRefGoogle Scholar
  119. Rötting O, Röpke W, Becker H, Gärtner C (2002) Polymer microfabrication technologies. Microsyst Technol 8(1):32–36CrossRefGoogle Scholar
  120. Ruan J, Tang L, Liou FW, Landers RG (2010) Direct three-dimensional layer metal deposition. J Manuf Sci Eng 132(6):064502CrossRefGoogle Scholar
  121. Ruprecht R, Benzler T, Hanemann T, Müller K, Konys J, Piotter V, Schanz G, Schmidt L, Thies A, Wöllmer H (1997) Various replication techniques for manufacturing three-dimensional metal microstructures. Microsyst Technol 4(1):28–31CrossRefGoogle Scholar
  122. Saggiomo V, Velders AH (2015) Simple 3D printed scaffold‐removal method for the fabrication of intricate microfluidic devices. Adv Sci 2(9):1500125Google Scholar
  123. Santosa J, Jing D, Das S (2002) Experimental and numerical study on the flow of fine powders from small-scale hoppers applied to SLS multi-material deposition–part I. Ann Arbor 1001:48109-2125Google Scholar
  124. Saotome Y, Iwazaki H (2001) Superplastic backward microextrusion of microparts for micro-electro-mechanical systems. J Mater Process Technol 119(1):307–311CrossRefGoogle Scholar
  125. Saxena I, Ehmann K, Cao J (2014) Laser-induced plasma in aqueous media: numerical  simulation and experimental validation of spatial and temporal profiles. Appl Optics 53(35):8283–8294CrossRefGoogle Scholar
  126. Saxena I, Malhotra R, Ehmann K, Cao J (2015a) High-speed fabrication of microchannels using line-based laser induced plasma micromachining. J Micro Nano-Manufact 3(2):021006 Google Scholar
  127. Saxena I, Sarah W, Cao J (2015b) Unidirectional magnetic field assisted laser induced plasma micro-machining. Manuf Lett 3:1–4CrossRefGoogle Scholar
  128. Schuettler M, Stiess S, King B, Suaning G (2005) Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil. J Neural Eng 2(1):S121CrossRefGoogle Scholar
  129. Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC (2014) Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem 86(6):3124–3130CrossRefGoogle Scholar
  130. Sochol R, Sweet E, Glick C, Venkatesh S, Avetisyan A, Ekman K, Raulinaitis A, Tsai A, Wienkers A, Korner K (2016) 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip. doi: 10.1039/C5LC01389E Google Scholar
  131. Song X, Pan Y, Chen Y (2015) Development of a low-cost parallel kinematic machine for multidirectional additive manufacturing. J Manuf Sci Eng 137(2):021005CrossRefGoogle Scholar
  132. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977CrossRefGoogle Scholar
  133. Sreenivasan R, Goel A, Bourell D (2010) Sustainability issues in laser-based additive manufacturing. Phys Procedia 5:81–90CrossRefGoogle Scholar
  134. Stanton M, Samitier J, Sánchez S (2015) Bioprinting of 3D hydrogels. Lab Chip 15(15):3111–3115CrossRefGoogle Scholar
  135. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411zbMATHCrossRefGoogle Scholar
  136. Sun C, Fang N, Wu D, Zhang X (2005) Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens Actuators, A 121(1):113–120CrossRefGoogle Scholar
  137. Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA (2013) 3D printing of interdigitated Li-Ion microbattery architectures. Adv Mater 25(33):4539–4543CrossRefGoogle Scholar
  138. Tan YE, Moon SK (2014) Inflatable wing design for micro UAVs using indirect 3D printing. In: 2014 11th international conference on ubiquitous robots and ambient intelligence (URAI). IEEE, pp 545–546Google Scholar
  139. Temple JP, Hutton DL, Hung BP, Huri PY, Cook CA, Kondragunta R, Jia X, Grayson WL (2014) Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J Biomed Mater Res, Part A 102(12):4317–4325Google Scholar
  140. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584CrossRefGoogle Scholar
  141. Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56(11):1635–1647CrossRefGoogle Scholar
  142. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A (2015) Continuous liquid interface production of 3D objects. Science 347(6228):1349–1352CrossRefGoogle Scholar
  143. Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67(5–8):1721–1754CrossRefGoogle Scholar
  144. Ventola CL (2014) Medical applications for 3D Printing: current and projected uses. Pharm Ther 39(10):704Google Scholar
  145. Wang J, Niino H, Yabe A (1999) One-step microfabrication of fused silica by laser ablation of an organic solution. Appl Phys A Mater Sci Process 68(1):111–113CrossRefGoogle Scholar
  146. Wang J, Ren L, Li L, Liu W, Zhou J, Yu W, Tong D, Chen S (2009) Microfluidics: a new cosset for neurobiology. Lab Chip 9(5):644–652CrossRefGoogle Scholar
  147. Weibel DB, Whitesides GM (2006) Applications of microfluidics in chemical biology. Curr Opin Chem Biol 10(6):584–591CrossRefGoogle Scholar
  148. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373CrossRefGoogle Scholar
  149. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3(1):335–373CrossRefGoogle Scholar
  150. Williams CB, Cochran JK, Rosen DW (2011) Additive manufacturing of metallic cellular materials via three-dimensional printing. Int J Adv Manuf Technol 53(1–4):231–239CrossRefGoogle Scholar
  151. Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012:208760CrossRefGoogle Scholar
  152. Wurm G, Tomancok B, Holl K, Trenkler J (2004) Prospective study on cranioplasty with individual carbon fiber reinforced polymere (CFRP) implants produced by means of stereolithography. Surg Neurol 62(6):510–521CrossRefGoogle Scholar
  153. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28(1):153–184CrossRefGoogle Scholar
  154. Xiong W, Zhou YS, He XN, Gao Y, Mahjouri-Samani M, Jiang L, Baldacchini T, Lu YF (2012) Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light Sci Appl 1(4):e6CrossRefGoogle Scholar
  155. Xu J (2014) Microfluidics “lab-on-a-chip” system for food chemical hazard detection. Food chemical hazard detection: development and application of new technologies, pp 263–289Google Scholar
  156. Xu J (2015) Liquid metal robotics: a new category of soft robotics on the horizon. Sci Bull 60(11):1047–1048CrossRefGoogle Scholar
  157. Xu G, Zhao W, Tang Y, Lu B (2006) Novel stereolithography system for small size objects. Rapid Prototyping Journal 12(1):12–17CrossRefGoogle Scholar
  158. Yazdi AA, Sadeghi A, Saidi MH (2014) Rheology effects on cross-stream diffusion in a Y-shaped micromixer. Colloids Surf A 456:296–306CrossRefGoogle Scholar
  159. Yazdi AA, Sadeghi A, Saidi MH (2015a) A depthwise averaging solution for cross-stream diffusion in a Y-micromixer by considering thick electrical double layers and nonlinear rheology. Microfluid Nanofluid 19(6):1297–1308CrossRefGoogle Scholar
  160. Yazdi AA, Sadeghi A, Saidi MH (2015b) Electrokinetic mixing at high zeta potentials: ionic size effects on cross stream diffusion. J Colloid Interface Sci 442:8–14CrossRefGoogle Scholar
  161. Zhang X, Jiang X, Sun C (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sens Actuators, A 77(2):149–156CrossRefGoogle Scholar
  162. Zhang H, Betz A, Qadeer A, Attinger D, Chen W (2011) Microfluidic formation of monodispersed spherical microgels composed of triple-network crosslinking. J Appl Polym Sci 121(5):3093–3100CrossRefGoogle Scholar
  163. Zhang Z, Xu J, Hong B, Chen X (2014) The effects of 3D channel geometry on CTC passing pressure–towards deformability-based cancer cell separation. Lab Chip 14(14):2576–2584CrossRefGoogle Scholar
  164. Zhang Z, Chen X, Xu J (2015) Entry effects of droplet in a micro confinement: implications for deformation-based circulating tumor cell microfiltration. Biomicrofluidics 9(2):024108MathSciNetCrossRefGoogle Scholar
  165. Zhao X-M, Xia Y, Whitesides GM (1997) Soft lithographic methods for nano-fabrication. J Mater Chem 7(7):1069–1074CrossRefGoogle Scholar
  166. Zhao X, Pan Y, Zhou C, Chen Y, Wang CC (2013) An integrated CNC accumulation system for automatic building-around-inserts. J Manuf Process 15(4):432–443CrossRefGoogle Scholar
  167. Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB, Kuntz JD, Biener MM, Ge Q, Jackson JA (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344(6190):1373–1377CrossRefGoogle Scholar
  168. Zhou C, Chen Y, Yang Z, Khoshnevis B (2011) Development of multi-material mask-image-projection-based stereolithography for the fabrication of digital materials. In: Annual solid freeform fabrication symposium, Austin, TX, 2011Google Scholar
  169. Zhou C, Chen Y, Yang Z, Khoshnevis B (2013) Digital material fabrication using mask-image-projection-based stereolithography. Rapid Prototyp J 19(3):153–165CrossRefGoogle Scholar
  170. Zhou C, Ye H, Zhang F (2015) A novel low-cost stereolithography process based on vector scanning and mask projection for high-accuracy, high-speed, high-throughput, and large-area fabrication. J Comput Inf Sci Eng 15(1):011003CrossRefGoogle Scholar
  171. Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56(2):145–172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Mechanical and Industrial EngineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations