Study of the geometry in a 3D flow-focusing device

  • Elena Castro-Hernández
  • Maarten P. Kok
  • Michel Versluis
  • David Fernandez Rivas
Research Paper
  • 628 Downloads

Abstract

We present a numerical and experimental study on a non-planar three-dimensional design of a microfluidic flow-focusing device for the well-controlled generation of monodisperse micron-sized droplets. Three relevant geometric parameters were identified: the distance between the inner inlet channel and the outlet channel, the width of the outlet channel, and its length. Simulation data extracted from a full parameter study and finite element simulations yielded four optimum designs that were then fabricated using soft lithography techniques. Under the predicted operating conditions, micro-droplets of a size of \({\sim}1\,\upmu \text {m}\) in diameter are obtained from a channel \(50\,\upmu \text {m}\) in width. This work represents an important breakthrough in the practical use of flow-focusing devices delivering a ratio of constriction to droplet size of 50 times, with the advantage of reduced clogging of the micro-channel, greatly improving the control and reliability of the device.

Keywords

Flow-focusing Microfluidics Jet Micro-droplets 

References

  1. Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21:27–40CrossRefGoogle Scholar
  2. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using flow focusing in microchannels. Appl Phys Lett 82:364–366CrossRefGoogle Scholar
  3. Carlier J, Arscott S, Thomy V, Fourrier JC, Caron F, Camart JC, Druon C, Tabourier P (2004) Integrated microfluidics based on multi-layered SU-8 for mass spectrometry analysis. Institute of Physics Publishing, BristolGoogle Scholar
  4. Castro-Hernández E, Gundabala V, Fernández-Nieves A, Gordillo JM (2009) Scaling the drop size in coflow experiments. New J Phys 11(075):021Google Scholar
  5. Castro-Hernández E, Campo-Cortés F, Gordillo JM (2012) Slender-body theory for the generation of micrometre-sized emulsions through tip streaming. J Fluid Mech 698:423–445CrossRefMATHGoogle Scholar
  6. Chiu YJ, Cho SH, Mei Z, Lien V, Wu TF, Lo YH (2013) Universally applicable three-dimensional hydrodynamic microfluidic flow focusing. Lab Chip 13:1803–1809CrossRefGoogle Scholar
  7. Cubaud T, Mason TG (2008) Capillary threads and viscous droplets in square microchannels. Phys Fluids 20(5):053,302CrossRefMATHGoogle Scholar
  8. Dhanaliwala AH, Chen JL, Wang S, Hossack JA (2012) Liquid flooded flow-focusing microfluidic device for in situ generation of monodisperse microbubbles. Microfluid Nanofluid 14(3–4):457–467Google Scholar
  9. Engl W, Backov R, Panizza P (2008) Controlled production of emulsions and particles by milli- and microfluidic techniques. Curr Opin Colloid Interface Sci 13(4):206–216CrossRefGoogle Scholar
  10. Frankowski M, Theisen J, Kummrow A, Simon P, Ragusch H, Bock N, Schmidt M, Neukammer J (2013) Microflow cytometers with integrated hydrodynamic focusing. Sensors 13(4):4674–4693CrossRefGoogle Scholar
  11. Gañán-Calvo AM (1998) Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys Rev Lett 80:285–288CrossRefGoogle Scholar
  12. Garstecki P, Fuerstman MJ, Whitesides GM (2005) Nonlinear dynamics of a flow-focusing bubble generator: an inverted dripping faucet. Phys Rev Lett 94(23):234,502CrossRefGoogle Scholar
  13. Gijsbertsen-Abrahamse A (2004) Status of cross-flow membrane emulsification and outlook for industrial application. J Membr Sci 230(1–2):149–159CrossRefGoogle Scholar
  14. Golden JP, Kim JS, Erickson JS, Hilliard LR, Howell PB, Anderson GP, Nasir M, Ligler FS (2009) Multi-wavelength microflow cytometer using groove-generated sheath flow. Lab Chip 9(13):1942–1950CrossRefGoogle Scholar
  15. Gordillo JM, Sevilla A, Campo-Cortés F (2014) Global stability of stretched jets: conditions for the generation of monodisperse micro-emulsions using coflows. J Fluid Mech 738:335–336CrossRefGoogle Scholar
  16. Hardy BS, Uechi K, Zhen J, Pirouz Kavehpour H (2009) The deformation of flexible PDMS microchannels under a pressure driven flow. Lab Chip 9(7):935CrossRefGoogle Scholar
  17. Lee W, Walker LM, Anna SL (2009) Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Phys Fluids 21(3):032,103CrossRefMATHGoogle Scholar
  18. Marín AG, Campo-Cortés F, Gordillo JM (2009) Generation of micron-sized drops and bubbles through viscous coflows. Colloids Surf A Physicochem Eng Asp 344:2–7CrossRefGoogle Scholar
  19. Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8(2):287CrossRefGoogle Scholar
  20. Paiè P, Bragheri F, Vazquez RM, Osellame R (2014) Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels. Lab Chip 14(11):1826CrossRefGoogle Scholar
  21. Rosenauer M, Buchegger W, Finoulst I, Verhaert P, Vellekoop M (2011) Miniaturized flow cytometer with 3d hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes. Microfluid Nanofluid 10(4):761–771CrossRefGoogle Scholar
  22. Schroën K, Bliznyuk O, Muijlwijk K, Sahin S, Berton-Carabin CC (2015) Microfluidic emulsification devices: from micrometer insights to large-scale food emulsion production. Curr Opin Food Sci 3:33–40CrossRefGoogle Scholar
  23. Scott R, Sethu P, Harnett CK (2008) Three-dimensional hydrodynamic focusing in a microfluidic coulter counter. Rev Sci Instrum 79(4):046,104CrossRefGoogle Scholar
  24. Sim SPC, Kang TG, Yobas L, Holtze C, Weitz DA (2010) The shape of a step structure as a design aspect to control droplet generation in microfluidics. J Micromech Microeng 20(3):035,010CrossRefGoogle Scholar
  25. Simonnet C, Groisman A (2005) Two-dimensional hydrodynamic focusing in a simple microfluidic device. Appl Phys Lett 87(11):114,104CrossRefGoogle Scholar
  26. Sugiura S, Nakajima M, Iwamoto S, Seki M (2001) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17(18):5562–5566CrossRefGoogle Scholar
  27. Taylor GI (1964) Conical free surfaces and fluid interfaces. In: Proceedings of the 11th international congress of applied mechanics (Munich), pp 790–796Google Scholar
  28. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz D (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541CrossRefGoogle Scholar
  29. Utada AS, Fernández-Nieves A, Stone HA, Weitz D (2007) Dripping to jetting transitions in co-flowing liquid streams. Phys Rev Lett 99(094):502Google Scholar
  30. Zhuang G, Jensen TG, Kutter JP (2012) Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3d focusing in a microfluidic system. Electrophoresis 33(12):1715–1722CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Elena Castro-Hernández
    • 1
  • Maarten P. Kok
    • 2
  • Michel Versluis
    • 2
  • David Fernandez Rivas
    • 3
  1. 1.Área de Mecánica de Fluidos, Departamento de Ingeniería Aeroespacial y Mecánica de FluidosUniversidad de SevillaSevilleSpain
  2. 2.Physics of Fluids GroupMESA+ Institute of Nanotechnology, University of TwenteEnschedeThe Netherlands
  3. 3.Mesoscale Chemical SystemsMESA+ Institute of Nanotechnology, University of TwenteEnschedeThe Netherlands

Personalised recommendations