Skip to main content

Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density

Abstract

Nanochannels, functionalized by grafting with a layer of charged polyelectrolyte (PE), have been employed for a large number of applications such as flow control, ion sensing, ion manipulation, current rectification and nanoionic diode fabrication. Recently, we established that such PE-grafted nanochannels, often denoted as “soft” nanochannels, can be employed for highly efficient, streaming-current-induced electrochemomechanical energy conversion in the presence of a background pressure-driven transport. In this paper, we extend our calculation for the practically realizable situation when the PE layer demonstrates a pH-dependent charge density. Consideration of such pH dependence necessitates consideration of hydrogen and hydroxyl ions in the electric double layer charge distribution, cubic distribution of the monomer profile, and a PE layer-induced drag force that accounts for this given distribution of the monomer profile. Our results express a hitherto unknown dependence of the streaming electric field (or the streaming potential) and the efficiency of the resultant energy conversion on parameters such as the pH of the surrounding electrolyte and the \(\hbox {pK}_{\mathrm{a}}\) of the ionizable group that ionizes to produce the PE charge—we demonstrate that increase in the pH and the PE layer thickness and decrease in the \(\hbox {pK}_{\mathrm{a}}\) and the ion concentration substantially enhance the energy conversion efficiency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adiga SP, Brenner DW (2005) Flow control through polymer-grafted smart nanofluidic channels: molecular dynamics simulations. Nano Lett 12:2509–2514

    Article  Google Scholar 

  2. Adiga SP, Brenner DW (2007) Toward designing smart nanovalves: modeling of flow control through nanopores via the helix coil transition of grafted polypeptide chains. Macromolecules 40:1342–1348

    Article  Google Scholar 

  3. Adiga SP, Brenner DW (2012) Stimuli-responsive polymer brushes for flow control through nanopores. J Funct Biomater 3:239–256

    Article  Google Scholar 

  4. Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O (2008) Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. J Am Chem Soc 130:16351–16357

    Article  Google Scholar 

  5. Ali M, Tahir MN, Siwy Z, Neumann R, Tremel W, Ensinger W (2011) Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels. Anal Chem 83:1673–1680

    Article  Google Scholar 

  6. Andrews J, Das S (2015) Effect of finite ion sizes in electric double layer mediated interaction force between two soft charged plates. RSC Adv 5:46873–46880

    Article  Google Scholar 

  7. Azzaroni O (2012) Polymer brushes here, there, and everywhere: recent advances in their practical applications and emerging opportunities in multiple research fields. J Pol Sci 50:3225–3258

    Article  Google Scholar 

  8. Bandopadhyay A, Chakraborty S (2012) Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids. Appl Phys Lett 101:153112

    Article  Google Scholar 

  9. Bandopadhyay A, Dhar J, Chakraborty S (2013) Effects of solvent-mediated nonelectrostatic ion–ion interactions on a streaming potential in microchannels and nanochannels. Phys Rev E 88:033014

    Article  Google Scholar 

  10. Barbati AC, Kirby BJ (2012) Soft diffuse interfaces in electrokinetics—theory and experiment for transport in charged diffuse layers. Soft Matter 8:10598–10613

    Article  Google Scholar 

  11. Chakraborty S, Das S (2008) Streaming-field-induced convective transport and its influence on the electroviscous effects in narrow fluidic confinement beyond the Debye-Hückel limit. Phys Rev E 77:037303

    Article  Google Scholar 

  12. Chanda S, Das S (2014) Effect of finite ion sizes in an electrostatic potential distribution for a charged soft surface in contact with an electrolyte solution. Phys Rev E 89:012307

    Article  Google Scholar 

  13. Chanda S, Sinha S, Das S (2014) Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter 10:7558–7568

    Article  Google Scholar 

  14. Chen G, Das S (2015a) Electrostatics of soft charged interfaces with pH-dependent charge density: effect of consideration of appropriate hydrogen ion concentration distribution. RSC Adv 5:4493–4501

    Article  Google Scholar 

  15. Chen G, Das S (2015b) Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density. J Appl Phys 117:185304

    Article  Google Scholar 

  16. Chen G, Das S (2015c) Scaling laws and ionic current inversion in polyelectrolyte-grafted nanochannels. J Phys Chem B 119:12714–12726

    Article  Google Scholar 

  17. Chen G, Das S (2015d) Streaming potential and electroviscous effects in soft nanochannels beyond Debye–Hückel linearization. J Colloid Interface Sci 445:357–363

    Article  Google Scholar 

  18. Chien M, Wang G, Yu W (2007) Modeling ion diffusion current in nanochannel using infinitesimal distribution resistor–capacitor circuits. Jpn J Appl Phys 46:7436–7440

    Article  Google Scholar 

  19. Daiguji H, Yang P, Szeri AJ, Majumdar A (2004) Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett 4:2315–2321

    Article  Google Scholar 

  20. Das S, Chakraborty S (2009) Influence of streaming potential on the transport and separation of charged spherical solutes in nanochannels subjected to particle-wall interactions. Langmuir 25:9863–9872

    Article  Google Scholar 

  21. Das T, Das S, Chakraborty S (2009) Influences of streaming potential on cross stream migration of flexible polymer molecules in nanochannel flows. J Chem Phys 130:244904

    Article  Google Scholar 

  22. Das S, Chakraborty S (2010) Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements. Langmuir 26:11589–11596

    Article  Google Scholar 

  23. Das S (2014) Explicit interrelationship between Donnan and surface potentials and explicit quantification of capacitance of charged soft interfaces with pH-dependent charge density. Colloids Surf A 462:69–74

    Article  Google Scholar 

  24. Das S, Banik M, Chen G, Sinha S, Mukherjee R (2015) Polyelectrolyte brushes: theory, modelling, synthesis and applications. Soft Matter 11:8550–8583

    Article  Google Scholar 

  25. de Gennes P-G (1976) Dynamics of entangled polymer solutions. II. Inclusion of hydrodynamic interactions. Macromolecules 9:594–598

    Article  Google Scholar 

  26. Dolan AK, Edwards SF (1974) Theory of the stabilization of colloids by adsorbed polymer. Proc R Soc Lond Ser A 337:509–516

    Article  Google Scholar 

  27. Dolan AK, Edwards SF (1975) The effect of excluded volume on polymer dispersant action. Proc R Soc Lond Ser A 343:427–442

    Article  Google Scholar 

  28. Donath E, Voigt E (1986) Streaming current and streaming potential on structured surfaces. J Colloid Interface Sci 109:122–139

    Article  Google Scholar 

  29. Duval JFL, Zimmermann R, Cordeiro AL, Rein N, Werner C (2009) Electrokinetics of diffuse soft interfaces. IV. Analysis of streaming current measurements at thermoresponsive thin films. Langmuir 25:10691–10703

    Article  Google Scholar 

  30. Duval JFL, Gaboriaud F (2010) Progress in electrohydrodynamics of soft microbial particle interphases. Curr Opin Colloid Interface Sci 15:184–195

    Article  Google Scholar 

  31. Duval JFL, Kütter D, Werner C, Zimmermann R (2011a) Electrohydrodynamics of soft polyelectrolyte multilayers: point of zero-streaming current. Langmuir 27:10739–10752

    Article  Google Scholar 

  32. Duval JFL, Kütter D, Nitschke M, Werner C, Zimmermann R (2011b) Interrelations between charging, structure and electrokinetics of nanometric polyelectrolyte films. J Colloid Interface Sci 362:439–449

    Article  Google Scholar 

  33. Duval JFL, Merlin J, Anantha P (2011c) Electrostatic interactions between diffuse soft multi-layered (bio)particles: beyond Debye–Hückel approximation and Deryagin formulation. Phys Chem Chem Phys 13:1037–1053

    Article  Google Scholar 

  34. Duval JFL, van Leeuwen HP (2004) Electrokinetics of diffuse soft interfaces. 1. Limit of low Donnan potentials. Langmuir 20:10324–10336

    Article  Google Scholar 

  35. Fredrickson GH, Pincus P (1991) Drainage of compressed polymer layers: dynamics of a “squeezed sponge”. Langmuir 7:786–795

    Article  Google Scholar 

  36. Freed KF, Edwards SF (1974) Polymer viscosity in concentrated solutions. J Chem Phys 61:3626–3633

    Article  Google Scholar 

  37. Harden JL, Cates ME (1996) Deformation of grafted polymer layers in strong shear flows. Phys Rev E 53:3782–3787

    Article  Google Scholar 

  38. Heyden F H J v d, Bonthuis DJ, Stein D, Meyer C, Dekker C (2006) Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett 6:2232–2237

    Article  Google Scholar 

  39. Israels R, Leermakers FAM, Fleer GJ, Zhulina EB (1994) Charged polymeric brushes: structure and scaling relations. Macromolecules 27:3249–3261

    Article  Google Scholar 

  40. Keh HJ, Ding JM (2003) Electrokinetic flow in a capillary with a charge-regulating surface polymer layer. J Colloid Interface Sci 263:645–660

    Article  Google Scholar 

  41. Keh HJ, Liu YC (1995) Electrokinetic flow in a circular capillary with a surface charge layer. J Colloid Interface Sci 172:222–229

    Article  Google Scholar 

  42. Klein J (1994) Shear of polymer brushes. Colloids Surf A 86:63–76

    Article  Google Scholar 

  43. Lyatskaya YV, Leermakers FAM, Fleer GJ, Zhulina EB, Birshteint TM (1995) Analytical self-consistent-field model of weak polyacid brushes. Macromolecules 28:3562–3569

    Article  Google Scholar 

  44. Ma HC, Keh HJ (2007) Diffusioosmosis of electrolyte solutions in a capillary slit with adsorbed polyelectrolyte layers. J Colloid Interface Sci 313:686–696

    Article  Google Scholar 

  45. McDaniel K, Valcius F, Andrews J, Das S (2015) Electrostatic potential distribution of a soft spherical particle with a charged core and pH-dependent charge density. Colloids Surf B 127:143–147

    Article  Google Scholar 

  46. Milne Z, Yeh L-H, Chou T-H, Qian S (2014) Tunable Donnan potential and electrokinetic flow in a biomimetic gated nanochannel with pH-regulated polyelectrolyte brushes. J Phys Chem C 118:19806–19813

    Article  Google Scholar 

  47. Milner ST, Witten TA, Cates ME (1988a) A parabolic density profile for grafted polymers. Europhys Lett 5:413

    Article  Google Scholar 

  48. Milner ST, Witten TA, Cates ME (1988b) Theory of the grafted polymer brush. Macromolecules 21:2610–2619

    Article  Google Scholar 

  49. Milner ST, Witten TA, Cates ME (1989) Effects of polydispersity in the end-grafted polymer brush. Macromolecules 22:853–861

    Article  Google Scholar 

  50. Milner ST (1991) Polymer brushes. Science 251:905–914

    Article  Google Scholar 

  51. Morrison FA, Osterle JF (1965) Electrokinetic energy conversion in ultrafine capillaries. J Chem Phys 43:2111–2115

    Article  Google Scholar 

  52. Netz RR, Andelman D (2003) Neutral and charged polymers at interfaces. Phys Rep 380:1–95

    Article  MATH  Google Scholar 

  53. Ohshima H (1995) Electrophoresis of soft particles. Adv Colloid Interface Sci 62:189–235

    Article  Google Scholar 

  54. Ohshima H (2009) Theory of electrostatics and electrokinetics of soft particles. Sci Technol Adv Mater 10:1–13

    Article  Google Scholar 

  55. Ohshima H (2012) Electrical phenomena in a suspension of soft particles. Soft Matter 8:3511–3514

    Article  Google Scholar 

  56. Ohshima H, Kondo T (1990) Electrokinetic flow between two parallel plates with surface charge layers: electro-osmosis and streaming potential. J Colloid Interface Sci 135:443–448

    Article  Google Scholar 

  57. Quan G, Wang M, Tong C (2014) A numerical study of spherical polyelectrolyte brushes by the self-consistent field theory. Polymer 55:6604–6613

    Article  Google Scholar 

  58. Siwy Z, Trofin L, Kohli P, Baker LA, Trautmann C, Martin CR (2005) Protein biosensors based on biofunctionalized conical gold nanotubes. J Am Chem Soc 127:5000–5001

    Article  Google Scholar 

  59. Starov VM, Solomentsev YE (1993a) Influence of gel layers on electrokinetic phenomena: 1. Streaming potential. J Colloid Interface Sci 158:159–165

    Article  Google Scholar 

  60. Starov VM, Solomentsev YE (1993b) Influence of gel layers on electrokinetic phenomena: 2. Effect of ions interaction with the gel layer. J Colloid Interface Sci 158:166–170

    Article  Google Scholar 

  61. Wang Q, Taniguchi T, Fredrickson GH (2004) Self-consistent field theory of polyelectrolyte systems. J Phys Chem B 108:6733–6744

    Article  Google Scholar 

  62. Wang M, Tong C (2014) RSC Adv 4:20769–20780

  63. Witte KN, Kim S, Won Y-Y (2009) Self-consistent field theory study of the effect of grafting density on the height of a weak polyelectrolyte brush. J Phys Chem B 113:11076–11084

    Article  Google Scholar 

  64. Xia F, Guo W, Mao Y, Hou X, Xue J, Xia H, Wang L, Song Y, Ji H, Ouyang Q, Wang Y, Jiang L (2008) Gating of single synthetic nanopores by proton-driven dna molecular motors. J Am Chem Soc 130:8345–8350

    Article  Google Scholar 

  65. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Single conical nanopores displaying pH-tunable rectifying characteristics. J Am Chem Soc 131:2070–2071

    Article  Google Scholar 

  66. Yang J, Lu F, Kostiuk LW, Kwok DY (2003) Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. J Micromech Microeng 13:963–970

    Article  Google Scholar 

  67. Zhulina YB, Pryamitsyn VA, Borisov OV (1989) Structure and conformational transitions in grafted polymer chain layers. A new theory. Pol Sci USSR 31:205–216

    Article  Google Scholar 

  68. Zhulina EB, Borisov OV (1997) Structure and interaction of weakly charged polyelectrolyte brushes: self-consistent field theory. J Chem Phys 107:5952–5967

    Article  Google Scholar 

  69. Zhulina EB, Borisov OV (2011) Poisson–Boltzmann theory of pH-sensitive (annealing) polyelectrolyte brush. Langmuir 27:10615–10633

    Article  Google Scholar 

  70. Zimmermann R, Kuckling D, Kaufmann M, Werner C, Duval JFL (2010) Electrokinetics of poly(N-isopropylacrylamid)-co-carboxyacrylamid soft thin-film. Evidence for diffuse segment distribution in swollen state. Langmuir 26:18169–18181

    Article  Google Scholar 

  71. Zimmermann R, Dukhin SS, Werner C, Duval JFL (2013) On the use of electrokinetics for unraveling charging and structure of soft planar polymer films. Curr Opin Colloid Interface Sci 18:83–92

    Article  Google Scholar 

  72. Zimmermann R, Romeis D, Bihannic I, Stuart MC, Sommer J-W, Wernerad C, Duval JFL (2014) Electrokinetics as an alternative to neutron reflectivity for evaluation of segment density distribution in PEO brushes. Soft Matter 10:7804–7809

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge NSF LSAMP Bridge to Doctorate programme for providing financial support to Mr. Jahin Patwary.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Das.

Appendix: Derivation of the governing equations

Appendix: Derivation of the governing equations

The free energy can be expressed as:

$$\begin{aligned} \Delta {F}^\prime =\int \Delta f\left[ \psi ,n_{\pm },n_{\mathrm{H}^+},n_{\mathrm{OH}^-}\right] d^3{\mathbf {r}}, \end{aligned}$$
(27)

where \(\Delta f\) is the free energy density, expressed as (written in expanded form and using Eq. (6) to express \(n_{\mathrm{A}^-}\)):

$$\begin{aligned} \Delta f &= -\frac{\epsilon _0\epsilon _r}{2}|\nabla \psi |^2+e\psi \left( n_+-n_-\right) +e\psi (n_{\mathrm{H}^+}-n_{\mathrm{OH}^-})-e\frac{K_a^\prime \gamma _a \varphi }{K_a^\prime +\quad n_{\mathrm{H}^+}}\psi \\&+\,k_BT\left[ n_+\left( \ln {\left( \frac{n_+}{n_{+,\infty }}\right) }-1\right) +n_-\left( \ln {\left( \frac{n_-}{n_{-,\infty }}\right) }-1\right) +n_{\mathrm{H}^+}\left( \ln {\left( \frac{n_{\mathrm{H}^+}}{n_{\mathrm{H}^+,\infty }}\right) }-1\right) \right. \\&\left. +\,n_{\mathrm{OH}^-}\left( \ln {\left( \frac{n_{\mathrm{OH}^-}}{n_{{\mathrm{OH}^-},\infty }}\right) }-1\right) \right] \\&\quad \quad \,[\text {for}\,-h\le y\le -h+d], \\&\Delta f=-\frac{\epsilon _0\epsilon _r}{2}|\nabla \psi |^2+e\psi \left( n_+-n_-\right) +e\psi (n_{\mathrm{H}^+}-n_{\mathrm{OH}^-}) \\&+\,k_BT\left[ n_+\left( \ln {\left( \frac{n_+}{n_{+,\infty }}\right) }-1\right) +n_-\left( \ln {\left( \frac{n_-}{n_{-,\infty }}\right) }-1\right) +n_{\mathrm{H}^+}\left( \ln {\left( \frac{n_{\mathrm{H}^+}}{n_{\mathrm{H}^+,\infty }}\right) }-1\right) \right. \\&\left. + \,n_{\mathrm{OH}^-}\left( \ln {\left( \frac{n_{\mathrm{OH}^-}}{n_{{\mathrm{OH}^-},\infty }}\right) }-1\right) \right] \\&\quad \quad \,[\text {for}\,-h+d\le y\le 0]. \end{aligned}$$
(28)

The equilibrium conditions will be obtained by minimizing Eq. (28) with respect to \(\psi\), \(n_+\), \(n_-\), \(n_{\mathrm{H}^+}\), \(n_{\mathrm{OH}^-}\). Below we discuss this minimization procedure in detail.

Minimizing with respect to \(\psi\) yields:

$$\begin{aligned} \frac{\delta (\Delta F^\prime )}{\delta \psi }&= 0 \Rightarrow \frac{\partial (\Delta f)}{\partial \psi }-\frac{\hbox {d}}{\hbox {d}y}\left( \frac{\partial (\Delta f)}{\partial \psi ^\prime }\right) \Rightarrow \frac{\hbox {d}^2\psi }{\hbox {d}y^2} \\&= \frac{-e(n_+-n_-)+e\frac{K_a^\prime \gamma _a \varphi }{K_a^\prime +n_{\mathrm{H}^+}}-e\left( n_{\mathrm{H}^+}-n_{\mathrm{OH}^-}\right) }{\epsilon _0\epsilon _r} ~ \\&\quad \quad [\text {for}-h\le y\le -h+d], \\ \frac{\delta (\Delta F^\prime )}{\delta \psi }&= 0\Rightarrow \frac{\partial (\Delta f)}{\partial \psi }-\frac{\hbox {d}}{\hbox {d}y}\left( \frac{\partial (\Delta f)}{\partial \psi ^\prime }\right) \Rightarrow \frac{\hbox {d}^2\psi }{\hbox {d}y^2} \\ &= \frac{-e(n_+-n_-)-e\left( n_{\mathrm{H}^+}-n_{\mathrm{OH}^-}\right) }{\epsilon _0\epsilon _r}\,~[\text {for}-h+d\le y\le 0]. \end{aligned}$$
(29)

Minimizing with respect to \(n_{\pm }\) yields:

$$\begin{aligned} \frac{\delta (\Delta F^\prime )}{\delta n_\pm }=0\Rightarrow n_\pm =\left( n_{\pm ,\infty }\right) \exp {\left( \mp \frac{e\psi }{k_BT}\right) }\,[\text {for}\;y\ge -h]. \end{aligned}$$
(30)

Minimizing with respect to \(n_{\mathrm{OH}^-}\) yields:

$$\begin{aligned} \frac{\delta (\Delta F^\prime )}{\delta n_{\mathrm{OH}^-}}=0\Rightarrow n_{\mathrm{OH}^-}=\left( n_{\mathrm{OH}^-,\infty }\right) \exp {\left( \frac{e\psi }{k_BT}\right) }~[\text {for}\;y\ge -h]. \end{aligned}$$
(31)

Minimizing with respect to \(n_{\mathrm{H}^+}\) yields:

$$\begin{aligned}&\frac{\delta (\Delta F^\prime )}{\delta n_{\mathrm{H}^+}}=0\Rightarrow n_{\mathrm{H}^+}=\left( n_{\mathrm{H}^+,\infty }\right) \exp {\left[ -\frac{e\psi }{k_BT} \left( 1+\frac{K^\prime _a \gamma _a \varphi }{{\left( K^\prime _a+n_{\mathrm{H}^+}\right) ^2}} \right) \right] }~ \\&\quad \quad \quad \,~[\text {for}-h\le y\le -h+d], \\&\frac{\delta (\Delta F^\prime )}{\delta n_{\mathrm{H}^+}}=0\Rightarrow n_{\mathrm{H}^+}=\left( n_{\mathrm{H}^+,\infty }\right) \exp {\left( -\frac{e\psi }{k_BT}\right) }~ \\&\quad \quad \quad \,~[\text {for}-h+d\le y\le 0]. \end{aligned}$$
(32)

Equations (79) are the dimensionless forms of Eqs. (30, 31, 32). Equation (32) establishes that \(n_{\mathrm{H}^+}\) distribution within the PE layer deviates from that predicted by the Boltzmann partitioning. This stems from the fact that the pH-dependent charge density of the PE induces a particular kind of \(n_{\mathrm{H}^+}\)-dependent term in the free energy functional. In virtually all the previous studies on mean-field modelling of the electrostatics of grafted PE layer with pH-dependent PE charge density, while this term was included in the free energy density, the hydrogen ion equilibrium was not obtained by minimizing this free energy density with respect to \(n_{\mathrm{H}^+}\); rather in a most ad hoc and erroneous fashion, it was assumed to obey the Boltzmann distribution. Please note that we do recover the Boltzmann distribution for \({\mathrm{H}}^+\) ion concentration outside the PE layer and for \(\hbox {OH}^-\) ion in the entire system. Of course, we shall have \(\hbox {OH}^-\) ions deviating from Boltzmann distribution for cases where the PE is positively charged and demonstrate a \(p\hbox {OH}\)-dependent charge density; for that case, the \(\hbox {H}^+\) ion will obey the Boltzmann distribution in the entire system. To summarize, therefore, this deviation of \(\hbox {H}^+\) ion concentration from the Boltzmann distribution occurs by virtue of the fact that the PE layer demonstrate pH-dependent charging, and the equilibrium \(\hbox {H}^+\) ion concentration must be obtained (something that, most erroneously, has not been done by other researchers) from minimization of the free energy change with respect to \(n_{\mathrm{H}^+}\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patwary, J., Chen, G. & Das, S. Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density. Microfluid Nanofluid 20, 37 (2016). https://doi.org/10.1007/s10404-015-1695-9

Download citation

Keywords

  • Electric Double Layer
  • Polymer Brush
  • Streaming Potential
  • Exclude Volume Effect
  • Electric Double Layer Thickness