Flow regime mapping of high inertial gas–liquid droplet microflows in flow-focusing geometries

Abstract

Confined gas–liquid droplet microflows present a lot of new perspectives for microfluidic systems that require the presence of a gaseous phase. In addition to the benefits associated with the discretization of reactive and sensing processes, the highly inertial droplets generated in these systems can enable fast efficient mixing by pair collisions as well as high system throughput due to the short convective timescales involved in the droplet transport. Presented herein is mapping of the geometry-specific droplet generation from a binary gas–liquid flow for different flow-focusing configurations. The dynamic interactions of inertia, shear stress, viscous and surface tension forces create three unique regimes in the gas–liquid flow rate space, providing adaptable flow configuration to specific applications. Analytical investigation and numerical analyses involving governing forces are also introduced to predict the effective droplet diameter versus gas flow rate. We found that the experimental results were well matched to the analytical predictions within 10 % of uncertainty.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ahn CH, Choi J, Beaucage G, Nevin JH, Lee J, Puntambekar A, Lee JY (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. IEEE 92:154–173

    Article  Google Scholar 

  2. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using flow focusing in microchannels. Appl Phys Lett 82:364–366

    Article  Google Scholar 

  3. Aryafar H, Kavehpour HP (2006) Droplet coalescence through planar surfaces. Phys Fluids 18:072105

    Article  Google Scholar 

  4. Atencia J, Beebe J (2004) Controlled microfluidic interfaces. Nature 437:648–655

    Article  Google Scholar 

  5. Bach GA, Koch DL, Gopinath A (2004) Coalenscence and bouncing of small aerosol droplets. J Fluid Mech 518:157–185

    Article  MATH  Google Scholar 

  6. Bedram A, Moosavi A (2011) Droplet breakup in an asymmetric microfluidic T Junction. Eur Phys J E Soft Matter 34:1–8

    Article  Google Scholar 

  7. Ben-Tzvi P, Rone W (2010) Microdroplet generation in gaseous and liquid environments. Microsyst Technol 16:333–356

    Article  Google Scholar 

  8. Bolognesi G, Hargreaves A, Ward AD, Kirby AK, Bain CD, Ces O (2015) Microfluidic generation of monodisperse ultra-low interfacial tension oil droplets in water. RSC Adv 5:8114–8121

    Article  Google Scholar 

  9. Buie CR, Santiago JG (2009) Two-phase hydrodynamics in a miniature direct methanol fuel cell. Int J Heat Mass Transf 52:5158–5166

    Article  MATH  Google Scholar 

  10. Carroll B, Hidrovo CH (2012a) Droplet collision mixing diagnostics using single fluorophore LIF. Exp Fluids 53:1301–1316

    Article  Google Scholar 

  11. Carroll B, Hidrovo CH (2012b) Experimental investigation of inertial mixing in colliding droplets. Heat Transf Eng 34:1–12

    Google Scholar 

  12. Carroll B, Hidrovo CH (2013) Droplet detachment mechanism in a high-speed gaseous microflow. J Fluid Eng 135:071206

    Article  Google Scholar 

  13. Chen YT, Chang WC, Fang WF, Ting SC, Yao DJ, Yang JT (2012) Fission and fusion of droplets in a 3-D crossing microstructure. Microfluid Nanofluid 13:239–247

    Article  Google Scholar 

  14. Choi S, Park JK (2005) Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Lab Chip 5:1161–1167

    Article  Google Scholar 

  15. Chong ZZ, Tor SB, Loh NH, Wong TN, Gñáan-Calvo AM, Tan SH, Nguyen NT (2015) Acoustofluidic control of bubble size in microfluidic flow-focusing configuration. Lab Chip 15:996–999

    Article  Google Scholar 

  16. Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40:R319–R336

    Article  Google Scholar 

  17. Dolovich MB, Dhand R (2011) Aerosol drug delivery: developments in device design and clinical use. Lancet 377:1032–1045

    Article  Google Scholar 

  18. Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS-PDMS bonding technique for microfluidic devices. J Micromech Microeng 18:067001

    Article  Google Scholar 

  19. Elrod SA, Hadimioglu B, Khuri-Yakub BT, Rawson EG, Richley E, Quate CF, Mansour NN, Lundgren TS (1989) Nozzleless droplet formation with focused acoustic beams. J Appl Phys 65:3441–3447

    Article  Google Scholar 

  20. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3:245–281

    Article  Google Scholar 

  21. Garstecki P, Gitlin I, DiLuizio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow focusing device. Appl Phys Lett 85:2649–2651

    Article  Google Scholar 

  22. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in T-junction—scaling and mechanism of breakup. Lab Chip 6:437–446

    Article  Google Scholar 

  23. Gong J, Kim CJ (2008) All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8:898–906

    Article  Google Scholar 

  24. Gong X, Miller PW, Gee AD, Long NJ, de Mello AJ, Vilar R (2012) Gas–liquid segmented flow microfluidics for screening Pd-Catalyzed carbonylation reactions. Chem Eur J 18:2768–2772

    Article  Google Scholar 

  25. Gopinath A, Koch DL (2001) Dynamics of droplet rebound from a weakly deformable gas–liquid interface. Phys Fluid 13:3526–3532

    Article  MATH  Google Scholar 

  26. Haubert K, Dryer T, Beebe D (2006) PDMS bonding by means of a portable, low-cost corona system. Lab Chip 6:1548–1549

    Article  Google Scholar 

  27. Hayward RC, Utada AS, Dan N, Weitz DA (2006) Dewetting instability during the formation of polymersomes from block-copolymer-stabilized double emulsions. Langmuir 22:4457–4461

    Article  Google Scholar 

  28. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hidessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse KJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22):8604–8610

    Article  Google Scholar 

  29. Hu W, Ohta AT (2011) Aqueous droplet manipulation by optically induced Marangoni circulation. Microfluid Nanofluid 11:307–316

    Article  Google Scholar 

  30. Jung JH, Lee KH, Lee KS, Ha BH, Oh YS, Sung HJ (2013) Optical separation of droplets on a microfluidic platform. Microfluid Nanofluid 16:635–644

    Article  Google Scholar 

  31. Kim M, Moon BU, Hidrovo CH (2013) Enhancement of the thermo-mechanical properties of PDMS molds for the hot embossing of PMMA microfluidic devices. J Micromech Microeng 23:095024

    Article  Google Scholar 

  32. Li W, Pham HH, Nie Z, Macdonald B, Guenther A, Kumacheva E (2008) Multi-step microfludic polymerization reactions conducted in droplets: the internal trigger approach. Am Chem Soc 130:9935–9941

    Article  Google Scholar 

  33. Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng ZD, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45:2556–2560

    Article  Google Scholar 

  34. Liu K, Ding H, Chen Y, Zhao XZ (2007) Droplet-based synthetic method using microflow focusing and droplet fusion. Microfluid Nanofluid 3:239–243

    Article  Google Scholar 

  35. Lorenceau E, Utada AS, Link DR, Cristobal G, Joanicot M, Weitz DA (2005) Generations of polymerosomes from double-emulsions. Langmuir 21:9183–9186

    Article  Google Scholar 

  36. Marine NA, Klein SA, Posner JD (2009) Partition coefficient measurements in picoliter drops using a segmented flow microfluidic device. Anal Chem 81:1471–1476

    Article  Google Scholar 

  37. Marmottant P, Villermaux E (2004) On spray formation. J Fluid Mech 498:73–111

    Article  MATH  Google Scholar 

  38. Mulligan MK, Rothstein JP (2012) Scale-up and control of droplet production in coupled microfluidic flow-focusing geometries. Microfluid Nanofluid 13(1):65–73

    Article  Google Scholar 

  39. Nunes JK, Tsai SSH, Wan J, Stone HA (2013) Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. J Phys D Appl Phys 46:114002

    Article  Google Scholar 

  40. Piorek BD, Lee SJ, Santiago JG, Moskovits M, Banerjee S, Meinhart CD (2007) Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules. PNAS 104:18898–18901

    Article  Google Scholar 

  41. Post SL, Abraham J (2002) Modeling the outcome of drop–drop collisions in Diesel sprays. Int J Multiph Flow 28:997–1019

    Article  MATH  Google Scholar 

  42. Priest C, Herminghaus S, Seemann R (2006) Generation of monodisperse gel emulsions in a microfluidic device. Appl Phys Lett 88:024106

    Article  Google Scholar 

  43. Roberts CC, Rao RR, Loewenberg M, Brooks CF, Galambos P, Grillet AM, Nemer MB (2012) Comparison of monodisperse droplet generation in flow focusing devices with hydrophilic and hydrophobic surfaces. Lab Chip 12:1540–1547

    Article  Google Scholar 

  44. Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics. Rep Prog Phys 75:016601

    Article  Google Scholar 

  45. Shabani R, Cho HJ (2013) Flow rate analysis of an EWOD-based device: how important are wetting-line pinning and velocity effects? Microfluid Nanofluid 15:587–597

    Article  Google Scholar 

  46. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356

    Article  Google Scholar 

  47. Song Y, Baudoin M, Manneville P, Baroud CN (2011) The air–liquid flow in a microfluidic airway tree. Med Eng Phys 33:849–856

    Article  Google Scholar 

  48. Suh KY, Kim P, Lee HH (2004) Capillary kinetics of thin polymer films in permeable microcavities. Appl Phys Lett 85:4019–4021

    Article  Google Scholar 

  49. Sun X, Tang K, Smith RD, Kelly RT (2013) Controlled dispensing and mixing of pico-to nanoliter volumes using on-demand droplet-based microfluidics. Microfluid Nanofluid 15:117–126

    Article  Google Scholar 

  50. Tan YC, Cristini V, Lee AP (2006) Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens Actuators B Chem 114:350–356

    Article  Google Scholar 

  51. Tan SH, Murshed SMS, Nguyen NT, Wong TN, Yobas L (2008a) Thermally controlled droplet formation in flow focusing geometry: formation regimes and effect of nanoparticle suspension. J Phys D Appl Phys 41:165501

    Article  Google Scholar 

  52. Tan YC, Ho YL, Lee AP (2008b) Microfluidic sorting of droplets by size. Microfluid Nanofluid 4:343–348

    Article  Google Scholar 

  53. Tan SH, Nguyen NT, Chua YC, Kang TG (2010) Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluid 4:032204

    Article  Google Scholar 

  54. Tanyeri M, Ranka M, Sittipolkul N, Schroeder CM (2011) A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11:1786–1794

    Article  Google Scholar 

  55. Thiele J, Windbergs M, Abate AR, Trebbin M, Shum HC, Forster S, Weitz DA (2011) Early development drug formulation on a chip: fabrication of nanoparticles using a microfluidic spray dryer. Lab Chip 11:2362–2368

    Article  Google Scholar 

  56. Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166

    Article  Google Scholar 

  57. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from microcapillary device. Science 308:537–541

    Article  Google Scholar 

  58. van Dijke K, Kobayashi I, Schroën Uemura K, Nakajima M, Boom R (2010) Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification. Microfluid Nanofluid 9:77–85

    Article  Google Scholar 

  59. Wada Y, Schmidt MA, Jensen KF (2006) Flow distribution and ozonolysis reaction in gas–liquid multichannel microreactors. Ind Eng Chem Res 45:8036–8042

    Article  Google Scholar 

  60. Wan J, Stone HA (2012) Coated gas bubbles for the continuous synthesis of hollow inorganic particles. Langmuir 28:37–41

    Article  Google Scholar 

  61. Wheeler AR, Moon H, Bird CA, Ogorzalek Loo RR, Kim CJ, Loo JA, Garrell RL (2005) Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Anal Chem 77:534–540

    Article  Google Scholar 

  62. Xu JH, Li SW, Tan J, Luo GS (2008) Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid Nanofluid 5:711–717

    Article  Google Scholar 

  63. Xu Q, Hashimoto M, Dang TT, Hoare T, Kohane DS, Whitesides GM, Langer R, Anderson DG (2009) Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5:1575–1581

    Article  Google Scholar 

  64. Yang SM, Yao H, Zhang D, Li WJ, Kung HF, Chen SC (2015) Droplet-based dielectrophoresis device for on-chip nanomedicine fabrication and improved gene delivery efficiency. Microfluid Nanofluid 19:235–243

    Article  Google Scholar 

  65. Yasuda T, Imamura K, Hirase K (2009) Droplet transportation using EWOD-induced wettability gradient. In: Solid-state sensors, actuators and microsystems conference (Transducers), pp 413–416

  66. Yobas L, Martens S, Ongand WL, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6:1073–1079

    Article  Google Scholar 

  67. Zhang K, Liang Q, Ma S, Mu X, Hu P, Wang Y, Luo G (2009) On-chip manipulation of continuous picoliter-volume superparamagentic droplets using a magnetic force. Lab Chip 9:2992–2999

    Article  Google Scholar 

  68. Zhou CF, Yue PT, Feng JJ (2006) Predicting sizes of droplets made by microfluidic flow-induced dripping. Phys Fluids 18:092105

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by DARPA 2008 Young Faculty Award (YFA) grant HR0011-08-1-0045 and is currently being supported by an NSF CAREER Award grant CBET-1151091. Authors thank Dr. Brian Carroll and David Choi for their helpful discussions for the experimental setup and Kevin Choi for his assistance in fabrication of microfluidic chips.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos H. Hidrovo.

Additional information

Arjang Shahriari and Myeongsub Mike Kim have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahriari, A., Kim, M.M., Zamani, S. et al. Flow regime mapping of high inertial gas–liquid droplet microflows in flow-focusing geometries. Microfluid Nanofluid 20, 20 (2016). https://doi.org/10.1007/s10404-015-1671-4

Download citation

Keywords

  • Microfluidics
  • Droplet generation
  • High inertia
  • Flow regime
  • Flow-focusing geometry