Skip to main content
Log in

Electrokinetic transport in silica nanochannels with asymmetric surface charge

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The characteristic high surface area to volume ratio causes ionic transport in nanofluidic devices to be governed by surface properties like surface charge. In recent years, experimental demonstrations have shown gate electrodes embedded in the nanochannel wall to systematically alter the surface potential to manipulate ionic transport in nanochannels. Using state-of-the-art non-equilibrium molecular dynamics simulations, electrokinetic transport of an aqueous KCl solution confined in a ~7 nm deep silica nanochannel is reported under the influence of asymmetric surface charge to investigate the effect of engineered surface charge on the resulting velocity and ion number density profiles within these nanochannels. Significant changes in the velocity magnitude and profile were observed in the silica nanochannels with two charged surface patches compared to a homogenously charged silica channel. The surface charged patches cause regions of local flow reversal which were indicated by an observed negative velocity. The simulations provide a theoretical foundation to systematically manipulate electrokinetic flow inside nanochannels by using engineered surface charge at the nanochannel walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ai Y, Liu J, Zhang B, Qian S (2011) Ionic current rectification in a conical nanofluidic field effect transistor. Sens Actuators B Chem 157:742–751

    Article  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684

    Article  Google Scholar 

  • Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  Google Scholar 

  • Bhadauria R, Aluru NR (2013) A quasi-continuum hydrodynamic model for slit shaped nanochannel flow. J Chem Phys 139(7):074109

    Article  Google Scholar 

  • Cannon DM Jr, Flachsbart BR, Shannon MA, Sweedler JV, Bohn PW (2004) Fabrication of single nanofluidic channels in poly(methylmethacrylate) films via focused-ion beam milling for use as molecular gates. Appl Phys Lett 85:1241

    Article  Google Scholar 

  • Chen L, Conlisk AT (2009) Effect of nonuniform surface potential on electroosmotic flow at large applied electric field strength. Biomed Microdevices 11(1):251–258

    Article  MATH  Google Scholar 

  • Chen Y, Ni Z, Wang G, Xu D, Li D (2007) Electroosmotic flow in nanotubes with high surface charge densities. Nano Lett 8(1):42–48

    Article  Google Scholar 

  • Conlisk AT (2013) Essentials of micro- and nanofluidics. Cambridge University Press, New York

    Google Scholar 

  • Contento NM, Bohn PW (2014) Tunable electrochemical pH modulation in a microchannel monitored via the proton-coupled electro-oxidation of hydroquinone. Biomicrofluidics 8: 044120–044121, 044120–044129

  • Cruz-Chu ER, Aksimentiev A, Schulten K (2006) Water-silica force field for simulating nanodevices. J Phys Chem B 110:21497–21508

    Article  Google Scholar 

  • Daiguji H (2010) Ion transport in nanofluidic channels. Chem Soc Rev 39:901–911

    Article  Google Scholar 

  • Daiguji H, Oka Y, Shirono K (2005) Nanofluidic diode and bipolar transistor. Nano Lett 5(11):2274–2280

    Article  Google Scholar 

  • Erickson D, Sinton D, Psaltis D (2011) Optofluidics for energy applications. Nat Photonics 5:583–590

    Article  Google Scholar 

  • Freund JB (2002) Electroosmosis in a nanometer-scale channel studied by atomistic simulation. J Comput Phys 116(5):2194–2200

    Google Scholar 

  • Fuest M, Boone C, Rangharajan KK, Conlisk AT, Prakash S (2015) A three-state nanofluidic field effect switch. Nano Lett 15(4):2365–2371. doi:10.1021/nl5046236

    Article  Google Scholar 

  • Guan W, Fan R, Reed MA (2011) Field-effect reconfigurable nanofluidic ionic diodes. Nat Commun 2:506. doi:10.1038/ncomms1514

    Article  Google Scholar 

  • Guan W, Li SX, Reed MA (2014) Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications. Nanotechnology 25(12):122001. doi:10.1088/0957-4484/25/12/122001

    Article  Google Scholar 

  • Guissani Y, Guillot B (1996) A numerical investigation of the liquid–vapor coexistence curve of silica. J Chem Phys 104:7633–7644

    Article  Google Scholar 

  • Hassanali AA, Singer SJ (2007) Model for the water-amorphous silica interface: the undissociated surface. J Phys Chem B 111:11181–11193

    Article  Google Scholar 

  • Hu N, Ai Y, Qian S (2012) Field effect control of electrokinetic transport in micro/nanofluidics. Sens Actuators B Chem 161:1150–1167

    Article  Google Scholar 

  • Huff NT, Demiralp E, Cagin T, Goddard WA (1999) Factors affecting molecular dynamics simulated vitreous silica structures. J Non Cryst Solids 253:133–142

    Article  Google Scholar 

  • Jiang Z, Stein D (2011) Charge regulation in nanopore ionic field-effect transistors. Phys Rev E Stat Nonlinear Soft Matter Phys 83:1–6

    Google Scholar 

  • Jin X, Aluru NR (2011) Gated transport in nanofluidic devices. Microfluid Nanofluid 11(3):297–306

    Article  Google Scholar 

  • Joseph S, Aluru NR (2006) Hierachical multiscale simulation of electrokinetic transport in silica nanochannels at the point of zero charge. Langmuir 22(21):9041–9051

    Article  Google Scholar 

  • Kalman EB, Sudre O, Vlassiouk I, Siwy ZS (2009) Control of ionic transport through gated single conical nanopores. Anal Bioanal Chem 394:413–419

    Article  Google Scholar 

  • Karniadakis G, Beskok A, Aluru N (2001) Microflows: fundamentals and simulation. Springer, Berlin

    Google Scholar 

  • Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5(5):943–948

    Article  Google Scholar 

  • Kim D, Darve E (2006) Molecular dynamics simulation of electroosmotic flows in rough wall nanochannels. Phys Rev E 73:051203

    Article  Google Scholar 

  • Kim SJ, Song YA, Han J (2010) Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications. Chem Soc Rev 39:912–922

    Article  Google Scholar 

  • Ko SH, Song Y-A, Kim SJ, Kim M, Han J, Kang KH (2012) Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization. Lab Chip 12:4472–4482

    Article  Google Scholar 

  • Kuo T-C, Donald J, Cannon M, Chen Y, Tulock JJ, Shannon MA, Sweedler JV, Bohn PW (2003a) Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal Chem 75(8):1861–1867

    Article  Google Scholar 

  • Kuo T-C, Cannon DM Jr, Shannon MA, Bohn PW, Sweedler JV (2003b) Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sens Actuators A 102(3):223–233

    Article  Google Scholar 

  • Lee S-H, Lee H, Jin T, Park S, Yoon BJ, Sung GY, Kim K-B, Kim SJ (2015) Sub-10 nm transparent all-around-gated ambipolar ionic field effect transistor. Nanoscale 7(3):936–946

    Article  Google Scholar 

  • Liu Y, Huber DE, Dutton RW (2010a) Limiting and overlimiting conductance in field-effect gated nanopores. Appl Phys Lett 96:253108. doi:10.1063/1.3457350

    Article  Google Scholar 

  • Liu Y, Huber DE, Tabard-Cossa V, Dutton RW (2010b) Descreening of field effect in electrically gated nanopores. Appl Phys Lett 97:143109. doi:10.1063/1.3497276

    Article  Google Scholar 

  • Lorenz CD, Crozier PS, Anderson JA, Travesset A (2008) Molecular dynamics of ionic transport and electrokinetic effects in realistic silica channels. J Phys Chem C 112:10222–10232

    Article  Google Scholar 

  • Lyklema J (1995) Fundamentals of interface and colloid science. Academic Press, San Diego

    Google Scholar 

  • Ma C, Contento NM, Bohn PW (2014a) Redox cycling on recessed ring-disk nanoelectrode arrays in the absence of supporting electrolyte. J Am Chem Soc 136:7225–7228

    Article  Google Scholar 

  • Ma Y, Xue S, Hsu S-C, Yeh L-H, Qian S, Tana H (2014b) Programmable ionic conductance in a pH-regulated gated nanochannel. Phys Chem Chem Phys 16:20138–21046

    Article  Google Scholar 

  • Maleki T, Mohammadi S, Ziaie B (2009) A nanofluidic channel with embedded transverse electrodes. Nanotechnology 20:1–6

    Article  Google Scholar 

  • Nam SW, Rooks MJ, Kim KB, Rossnagel SM (2009) Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett 9(5):2044–2048

    Article  Google Scholar 

  • Oyarzua E, Walther JH, Meija A, Zambrano HA (2015) Early regimes of water capillary flow in slit silica nanochannels. Phys Chem Chem Phys 17:14731–14739

    Article  Google Scholar 

  • Pardon G, van der Wijngaart W (2013) Modeling and simulation of electrostatically gated nanochannels. Adv Colloid Interface Sci 199–200:78–94

    Article  Google Scholar 

  • Pennathur S, Santiago JG (2005) Electrokinetic transport in nanochannels. 1. Theory. Anal Chem 77:6772–6781

    Article  Google Scholar 

  • Pinti M, Zambrano HA, Rangharajan KK, Wang B, Conlisk AT, Prakash S (2014) Active surface charge control for artificial ion pumps. Hilton head workshop 2014: a solid-state sensors, actuators and microsystems workshop Hilton Head, Transducers Research Foundation, South Carolina

  • Prakash S, Yeom J (2014) Nanofluidics and microfluidics: systems and applications. William Andrew, Norwich

    Google Scholar 

  • Prakash S, Piruska A, Gatimu EN, Bohn PW, Sweedler JV, Shannon MA (2008) Nanofluidics: systems and applications. IEEE Sens J 8(5):441–450

    Article  Google Scholar 

  • Prakash S, Karacor MB, Banerjee S (2009) Surface modification in microsystems and nanosystems. Surf Sci Rep 64(7):233–254

    Article  Google Scholar 

  • Prakash S, Pinti M, Bhushan B (2012) Theory, fabrication and applications of microfluidic and nanofluidic biosensors. Philos Trans R Soc A Math Phys Eng Sci 370(1967):2269–2303

    Article  Google Scholar 

  • Probstein RE (2003) Physiochemical hydrodynamics: an introduction. Wiley, Hoboken

    Google Scholar 

  • Qiao R, Aluru NR (2003) Ion concentrations and velocity profiles in nanochannel electroosmotic flows’. J Chem Phys 118(10):4692–4701

    Article  Google Scholar 

  • Qiao R, Aluru NR (2004) Charge inversion and flow reversal in a nanochannel electro-osmotic flow. Phys Rev Lett 92:198301. doi:10.1103/PhysRevLett.92.198301

    Article  Google Scholar 

  • Qiao R, Aluru NR (2005) Surface-charge-induced asymmetric electrokinetic transport in confined silicon nanochannels. Appl Phys Lett 86(14):1–3

    Article  Google Scholar 

  • Qiao R, Georgiadis JG, Aluru NR (2006) Differential ion transport induced electroosmosis and internal recirculation in heterogeneous osmosis membranes. Nano Lett 6(5):995–999

    Article  Google Scholar 

  • Rangharajan KK, Kwak KJ, Conlisk AT, Wu Y, Prakash S (2015) Effect of surface modification on interfacial nanobubble morphology and contact line tension. Soft Matter 11(26):5214–5223

    Article  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  Google Scholar 

  • Schoch RB, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80:839–883

    Article  Google Scholar 

  • Singh KP, Kumar M (2012) Effect of gate length and dielectric thickness on ion and fluid transport in a fluidic nanochannel. Lab Chip 12:1332–1339

    Article  Google Scholar 

  • Singh KP, Kumari K, Kumar M (2011) Field-effect control of electrokinetic ion transport in a nanofluidic channel. J Appl Phys 110:084301. doi:10.1063/1.3651634

    Article  Google Scholar 

  • Suk ME, Aluru NR (2013) Molecular and continuum hydrodynamics in graphene nanopores. RSC Adv 3(24):9365–9372

    Article  Google Scholar 

  • Swaminathan VV, Gibson LR II, Pinti M, Prakash S, Bohn PW, Shannon MA (2012) Ionic transport in nanocapillary membrane systems. J Nanopart Res 14(8):951–965

    Article  Google Scholar 

  • Tseng S, Tai Y-H, Hsu J-P (2013) Electrokinetic flow in a pH-regulated, cylindrical nanochannel containing multiple ionic species. Microfluid Nanofluid 15:847–857

    Article  Google Scholar 

  • Tsuneyuki S, Tsukada M, Aoki H, Matsui Y (1988) First-principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett 61(7):869–874

    Article  Google Scholar 

  • Walther JH, Jaffe R, Halicioglu T, Koumoutsakos P (2001) Carbon nanotubes in water: structural characteristics and energetics. J Phys Chem B 105:9980–9987

    Article  Google Scholar 

  • Walther JH, Werder T, Jaffe RL, Gonnet P, Bergdorf M, Zimmerli U, Koumoutsakos P (2004a) Water-carbon interactions III: the influence of surface and liquid impurities. Phys Chem Chem Phys 6:1988–1995

    Article  Google Scholar 

  • Walther JH, Werder T, Jaffe RL, Koumoutsakos P (2004b) Hydrodynamic properties of carbon nanotubes. Phys Rev E 69:062201

    Article  Google Scholar 

  • Xue S, Yeh L-H, Ma Y, Qian S (2014) Tunable streaming current in a pH-regulated nanochannel by a field effect transistor. J Phys Chem C 118(12):6090–6099

    Article  Google Scholar 

  • Yang AHJ, Moore SD, Schmidt BS, Klug M, Lipson M, Erickson D (2008) Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457:71–75

    Article  Google Scholar 

  • Yoshida H, Mizuno H, Kinjo T, Washizu H, Barrat J-L (2014) Molecular dynamics simulation of electrokinetic flow of an aqueous electrolyte solution in nanochannels. J Chem Phys 140:214701

    Article  Google Scholar 

  • Zaino LP, Contento NM, Bohn PW (2014) Electron transfer and electrokinetics in nanochannnels presenting multiple embedded annular nanoband electrodes in the strong coupling limit. Chem Electro Chem. doi:10.1002/ac5020222

  • Zambrano HA, Pinti M, Conlisk AT, Prakash S (2012) Electrokinetic transport in a water–chloride nanofilm in contact with a silica surface with discontinuous charged patches. Microfluid Nanofluid 13(5):735–747

    Article  Google Scholar 

  • Zambrano HA, Walther JH, Jaffe RL (2014) Molecular dynamics simulations of water on a hydrophilic silica surface at high pressures. J Mol Liq 198:107–113

    Article  Google Scholar 

  • Zhang H, Hassanali AA, Shin YK, Knight C, Singer SJ (2011) The water-amorphous silica interface: analysis of the Stern layer and surface conduction. J Comput Phys 134:1–13

    Google Scholar 

  • Zhu W, Singer SJ, Zheng Z, Conlisk AT (2005) Electro-osmotic flow of a model electrolyte. Phys Rev E 71:041501

    Article  Google Scholar 

  • Zimmerli U, Gonnet P, Walther JH, Koumoutsakos P (2005) Curvature induced L-defects in water conduction in carbon nanotubes. Nano Lett 5(6):1017–1022

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge partial financial support from Defense Advanced Research Projects Agency (DARPA) through the US Army Research Office (ARO) Grant W911NF09C0079, the US Army Research Office (ARO) for Grant W911NF1010290, and NSF CBET-1335946. M. Fuest would like to thank the NSF graduate fellowship program for support. The authors wish to acknowledge discussions with Jim Giuliani and Kaushik K. Rangharajan in the Mechanical Engineering Department at OSU. We thank the Ohio Supercomputer Center (OSC) for computational support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaurya Prakash or A. T. Conlisk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, S., Zambrano, H.A., Fuest, M. et al. Electrokinetic transport in silica nanochannels with asymmetric surface charge. Microfluid Nanofluid 19, 1455–1464 (2015). https://doi.org/10.1007/s10404-015-1659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1659-0

Keywords

Navigation