Skip to main content
Log in

Frequency effects on microparticle motion in horizontally actuated open rectangular chambers

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The motion of a particle in a liquid subjected to periodic vibrations is determined by its interaction with the periodic (in time) and spatially varying first-order flow field and the ensuing second-order field. The dominating force either allows the particle to collect in stable locations or remain dispersed in the liquid bulk. In this work, we investigate the characteristics of a microparticle’s response to these first- and second-order effects across frequencies ranging from 100 Hz to 100 MHz. The movement of sedimented particles is analyzed through the simulation of capillary wave fields and acoustic wave fields in a horizontally actuated open rectangular chamber. The changing effect of the first-order field on the particle’s motion, from being the dominant mechanism at low frequencies to being ineffective at the higher frequencies, is demonstrated by considering time-averaged forces acting on the particle, over a cycle. Further, the time-averaged effects of the second-order field, termed as streaming field, are analyzed in both capillary-wave- and acoustic-wave-based collection mechanisms; this analysis provides valuable information regarding the minimum particle size that can be collected in a chamber, through the respective mechanisms. Intriguingly, it is observed that the collection of nanometer-sized particles requires excitation at either end of the frequency spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal P, Gandhi PS, Neild A (2013) The mechanics of microparticle collection in an open fluid volume undergoing low frequency horizontal vibration. J Appl Phys 114(11):114904. doi:10.1063/1.4821256

    Article  Google Scholar 

  • Agrawal P, Gandhi PS, Neild A (2014a) Microparticle response to two-dimensional streaming flows in rectangular chambers undergoing low-frequency horizontal vibrations. Phys Rev Appl 2(064):008. doi:10.1103/PhysRevApplied.2.064008

    Google Scholar 

  • Agrawal P, Gandhi PS, Neild A (2014b) Quantification and comparison of low frequency microparticle collection mechanism in an open rectangular chamber. J Appl Phys 115(17):174505. doi:10.1063/1.4874395

    Article  Google Scholar 

  • Bruus H (2012) Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab Chip 12:20–28. doi:10.1039/C1LC20770A

    Article  Google Scholar 

  • Cao Q, Han X, Li L (2014) Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms. Lab Chip 14:2762–2777. doi:10.1039/C4LC00367E

    Article  Google Scholar 

  • Chuang CH, Huang YW (2013) Multistep manipulations of poly(methyl-methacrylate) submicron particles using dielectrophoresis. Electrophoresis 34(22–23):3111–3118. doi:10.1002/elps.201300258

    Article  Google Scholar 

  • Courtney CRP, Ong CK, Drinkwater BW, Bernassau AL, Wilcox PD, Cumming DRS (2012) Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves. Proc R Soc A 468(2138):337–360. doi:10.1098/rspa.2011.0269

    Article  Google Scholar 

  • Devendran C, Gralinski I, Neild A (2014) Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel. Microfluid Nanofluidics. doi:10.1007/s10404-014-1380-4

  • Falk K, Mecke K (2011) Capillary waves of compressible fluids. J Phys Condens Matter 23(18):184,103. doi:10.1088/0953-8984/23/18/184103

    Article  Google Scholar 

  • Frampton KD, Martin SE, Minor K (2003) The scaling of acoustic streaming for application in micro-fluidic devices. Appl Acoust 64(7):681–692. doi:10.1016/S0003-682X(03)00005-7

    Article  Google Scholar 

  • Gor’kov LP (1962) On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov Phys Dokl 6:773–775

    Google Scholar 

  • Grinenko A, Ong CK, Courtney CRP, Wilcox PD, Drinkwater BW (2012) Efficient counter-propagating wave acoustic micro-particle manipulation. Appl Phys Lett 101(23):233501. doi:10.1063/1.4769092

    Article  Google Scholar 

  • Hagsäter SM, Jensen TG, Bruus H, Kutter JP (2007) Acoustic resonances in microfluidic chips: full-image micro-piv experiments and numerical simulations. Lab Chip 7:1336–1344. doi:10.1039/B704864E

    Article  Google Scholar 

  • Herald MA, Marion JB (2013) Classical electromagnetic radiation, 3rd edn. Dover, New York

    Google Scholar 

  • Jensen R, Gralinski I, Neild A (2013) Ultrasonic manipulation of particles in an open fluid film. IEEE Trans Ultrason Ferroelectr Freq Control 60(9):1964–1970. doi:10.1109/TUFFC.2013.2781

    Article  Google Scholar 

  • Kanazaki T, Okada T (2012) Two-dimensional particle separation in coupled acoustic-gravity-flow field vertically by composition and laterally by size. Anal Chem 84(24):10,750–10,755. doi:10.1021/ac302637e

    Article  Google Scholar 

  • Klotsa D, Swift MR, Bowley RM, King PJ (2009) Chain formation of spheres in oscillatory fluid flows. Phys Rev E 79(021):302. doi:10.1103/PhysRevE.79.021302

    Google Scholar 

  • Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK, Allbritton NL (2013) Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 85(2):451–472. doi:10.1021/ac3031543

    Article  Google Scholar 

  • Lam KH, Hsu HS, Li Y, Lee C, Lin A, Zhou Q, Kim ES, Shung KK (2013) Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application. Biotechnol Bioeng 110(3):881–886. doi:10.1002/bit.24735

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1987) Fluid mechanics. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36:492–506. doi:10.1039/B601326K

    Article  Google Scholar 

  • Lighthill SJ (1978) Acoustic streaming. J Sound Vib 61(3):391–418. doi:10.1016/0022-460X(78)90388-7

    Article  MATH  Google Scholar 

  • Liu Y, Lim KM (2011) Particle separation in microfluidics using a switching ultrasonic field. Lab Chip 11:3167–3173. doi:10.1039/C1LC20481E

    Article  Google Scholar 

  • Longuet-Higgins MS (1953) Mass transport in water waves. Phil Trans R Soc A 245(903):535–581. doi:10.1098/rsta.1953.0006

    Article  MATH  MathSciNet  Google Scholar 

  • Manneberg O, Vanherberghen B, Svennebring J, Hertz HM, Önfelt B, Wiklund M (2008) A three-dimensional ultrasonic cage for characterization of individual cells. Appl Phys Lett 93(6):063901. doi:10.1063/1.2971030

    Article  Google Scholar 

  • Muller PB, Barnkob R, Jensen MJH, Bruus H (2012) A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12:4617–4627. doi:10.1039/C2LC40612H

    Article  Google Scholar 

  • Neild A, Oberti S, Radziwill G, Dual J (2007) Simultaneous positioning of cells into two-dimensional arrays using ultrasound. Biotechnol Bioeng 97(5):1335–1339. doi:10.1002/bit.21315

    Article  Google Scholar 

  • Nilsson J, Evander M, Hammarstrm B, Laurell T (2009) Review of cell and particle trapping in microfluidic systems. Anal Chim Acta 649(2):141–157. doi:10.1016/j.aca.2009.07.017

    Article  Google Scholar 

  • Nyborg WLM (1965) Physical acoustics IIB. Academic Press, New York

    Google Scholar 

  • Oberti S, Neild A, Quach R, Dual J (2009) The use of acoustic radiation forces to position particles within fluid droplets. Ultrasonics 49(1):47–52. doi:10.1016/j.ultras.2008.05.002

    Article  Google Scholar 

  • Ohlin M, Christakou AE, Frisk T, Önfelt B, Wiklund M (2013) Influence of acoustic streaming on ultrasonic particle manipulation in a 100-well ring-transducer microplate. J Micromech Microeng 23(035):008. doi:10.1088/0960-1317/23/3/035008

    Google Scholar 

  • Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T (2005) Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip 5:20–22. doi:10.1039/B405748C

    Article  Google Scholar 

  • Phillips OM (1966) The dynamics of the upper ocean. Cambridge Univeristy Press, New York

    MATH  Google Scholar 

  • Raeymaekers B, Pantea C, Sinha DN (2011) Manipulation of diamond nanoparticles using bulk acoustic waves. J Appl Phys 109(1):014317. doi:10.1063/1.3530670

    Article  Google Scholar 

  • Richardson JF, Harker JH, Backhurst JR (2002) Particle technology and separation processes. Butterworth Heinemann, Woburn

    Google Scholar 

  • Rogers P, Gralinski I, Galtry C, Neild A (2013) Selective particle and cell clustering at airliquid interfaces within ultrasonic microfluidic systems. Microfluid Nanofluidics 14(3–4):469–477. doi:10.1007/s10404-012-1065-9

    Article  Google Scholar 

  • Sajeesh P, Sen A (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluidics 17(1):1–52. doi:10.1007/s10404-013-1291-9

    Article  Google Scholar 

  • Spengler JF, Coakley WT, Christensen KT (2003) Microstreaming effects on particle concentration in an ultrasonic standing wave. AIChE J 49(11):2773–2782. doi:10.1002/aic.690491110

    Article  Google Scholar 

  • Urban AS, Carretero-Palacios S, Lutich AA, Lohmüller T, Feldmann J, Jäckel F (2014) Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives. Nanoscale 6:4458–4474. doi:10.1039/C3NR06617G

    Article  Google Scholar 

  • Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems. Recent developments. Anal Chem 76(12):3373–3386. doi:10.1021/ac040063q

    Article  Google Scholar 

  • Walker R, Gralinski I, Keong Lay K, Alan T, Neild A (2012) Particle manipulation using an ultrasonic micro-gripper. Appl Phys Lett 101(16):163504. doi:10.1063/1.4759127

    Article  Google Scholar 

  • Whitehill JD, Gralinski I, Joiner D, Neild A (2012) Nanoparticle manipulation within a microscale acoustofluidic droplet. J Nanoparticle Res 14(11):1–11. doi:10.1007/s11051-012-1223-8

    Google Scholar 

  • Wunenburger R, Carrier V, Garrabos Y (2002) Periodic order induced by horizontal vibrations in a two-dimensional assembly of heavy beads in water. Phys Fluids 14(7):2350–2359. doi:10.1063/1.1483842

    Article  Google Scholar 

  • Xuan X, Zhu J, Church C (2010) Particle focusing in microfluidic devices. Microfluid Nanofluidics 9(1):1–16. doi:10.1007/s10404-010-0602-7

    Article  Google Scholar 

  • Zoueshtiagh F, Thomas PJ, Thomy V, Merlen A (2008) Micrometric granular ripple patterns in a capillary tube. Phys Rev Lett 100(054):501. doi:10.1103/PhysRevLett.100.054501

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Neild.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, P., Gandhi, P.S. & Neild, A. Frequency effects on microparticle motion in horizontally actuated open rectangular chambers. Microfluid Nanofluid 19, 1209–1219 (2015). https://doi.org/10.1007/s10404-015-1640-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1640-y

Keywords

Navigation