Microfluidics and Nanofluidics

, Volume 19, Issue 5, pp 1209–1219 | Cite as

Frequency effects on microparticle motion in horizontally actuated open rectangular chambers

  • Prashant Agrawal
  • Prasanna S. Gandhi
  • Adrian Neild
Research Paper


The motion of a particle in a liquid subjected to periodic vibrations is determined by its interaction with the periodic (in time) and spatially varying first-order flow field and the ensuing second-order field. The dominating force either allows the particle to collect in stable locations or remain dispersed in the liquid bulk. In this work, we investigate the characteristics of a microparticle’s response to these first- and second-order effects across frequencies ranging from 100 Hz to 100 MHz. The movement of sedimented particles is analyzed through the simulation of capillary wave fields and acoustic wave fields in a horizontally actuated open rectangular chamber. The changing effect of the first-order field on the particle’s motion, from being the dominant mechanism at low frequencies to being ineffective at the higher frequencies, is demonstrated by considering time-averaged forces acting on the particle, over a cycle. Further, the time-averaged effects of the second-order field, termed as streaming field, are analyzed in both capillary-wave- and acoustic-wave-based collection mechanisms; this analysis provides valuable information regarding the minimum particle size that can be collected in a chamber, through the respective mechanisms. Intriguingly, it is observed that the collection of nanometer-sized particles requires excitation at either end of the frequency spectrum.


Microparticle manipulation Acoustic streaming Capillary wave Acoustic wave 


  1. Agrawal P, Gandhi PS, Neild A (2013) The mechanics of microparticle collection in an open fluid volume undergoing low frequency horizontal vibration. J Appl Phys 114(11):114904. doi: 10.1063/1.4821256 CrossRefGoogle Scholar
  2. Agrawal P, Gandhi PS, Neild A (2014a) Microparticle response to two-dimensional streaming flows in rectangular chambers undergoing low-frequency horizontal vibrations. Phys Rev Appl 2(064):008. doi: 10.1103/PhysRevApplied.2.064008 Google Scholar
  3. Agrawal P, Gandhi PS, Neild A (2014b) Quantification and comparison of low frequency microparticle collection mechanism in an open rectangular chamber. J Appl Phys 115(17):174505. doi: 10.1063/1.4874395 CrossRefGoogle Scholar
  4. Bruus H (2012) Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab Chip 12:20–28. doi: 10.1039/C1LC20770A CrossRefGoogle Scholar
  5. Cao Q, Han X, Li L (2014) Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms. Lab Chip 14:2762–2777. doi: 10.1039/C4LC00367E CrossRefGoogle Scholar
  6. Chuang CH, Huang YW (2013) Multistep manipulations of poly(methyl-methacrylate) submicron particles using dielectrophoresis. Electrophoresis 34(22–23):3111–3118. doi: 10.1002/elps.201300258 CrossRefGoogle Scholar
  7. Courtney CRP, Ong CK, Drinkwater BW, Bernassau AL, Wilcox PD, Cumming DRS (2012) Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves. Proc R Soc A 468(2138):337–360. doi: 10.1098/rspa.2011.0269 CrossRefGoogle Scholar
  8. Devendran C, Gralinski I, Neild A (2014) Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel. Microfluid Nanofluidics. doi: 10.1007/s10404-014-1380-4
  9. Falk K, Mecke K (2011) Capillary waves of compressible fluids. J Phys Condens Matter 23(18):184,103. doi: 10.1088/0953-8984/23/18/184103 CrossRefGoogle Scholar
  10. Frampton KD, Martin SE, Minor K (2003) The scaling of acoustic streaming for application in micro-fluidic devices. Appl Acoust 64(7):681–692. doi: 10.1016/S0003-682X(03)00005-7 CrossRefGoogle Scholar
  11. Gor’kov LP (1962) On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov Phys Dokl 6:773–775Google Scholar
  12. Grinenko A, Ong CK, Courtney CRP, Wilcox PD, Drinkwater BW (2012) Efficient counter-propagating wave acoustic micro-particle manipulation. Appl Phys Lett 101(23):233501. doi: 10.1063/1.4769092 CrossRefGoogle Scholar
  13. Hagsäter SM, Jensen TG, Bruus H, Kutter JP (2007) Acoustic resonances in microfluidic chips: full-image micro-piv experiments and numerical simulations. Lab Chip 7:1336–1344. doi: 10.1039/B704864E CrossRefGoogle Scholar
  14. Herald MA, Marion JB (2013) Classical electromagnetic radiation, 3rd edn. Dover, New YorkGoogle Scholar
  15. Jensen R, Gralinski I, Neild A (2013) Ultrasonic manipulation of particles in an open fluid film. IEEE Trans Ultrason Ferroelectr Freq Control 60(9):1964–1970. doi: 10.1109/TUFFC.2013.2781 CrossRefGoogle Scholar
  16. Kanazaki T, Okada T (2012) Two-dimensional particle separation in coupled acoustic-gravity-flow field vertically by composition and laterally by size. Anal Chem 84(24):10,750–10,755. doi: 10.1021/ac302637e CrossRefGoogle Scholar
  17. Klotsa D, Swift MR, Bowley RM, King PJ (2009) Chain formation of spheres in oscillatory fluid flows. Phys Rev E 79(021):302. doi: 10.1103/PhysRevE.79.021302 Google Scholar
  18. Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK, Allbritton NL (2013) Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 85(2):451–472. doi: 10.1021/ac3031543 CrossRefGoogle Scholar
  19. Lam KH, Hsu HS, Li Y, Lee C, Lin A, Zhou Q, Kim ES, Shung KK (2013) Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application. Biotechnol Bioeng 110(3):881–886. doi: 10.1002/bit.24735 CrossRefGoogle Scholar
  20. Landau LD, Lifshitz EM (1987) Fluid mechanics. Pergamon Press, OxfordzbMATHGoogle Scholar
  21. Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36:492–506. doi: 10.1039/B601326K CrossRefGoogle Scholar
  22. Lighthill SJ (1978) Acoustic streaming. J Sound Vib 61(3):391–418. doi: 10.1016/0022-460X(78)90388-7 zbMATHCrossRefGoogle Scholar
  23. Liu Y, Lim KM (2011) Particle separation in microfluidics using a switching ultrasonic field. Lab Chip 11:3167–3173. doi: 10.1039/C1LC20481E CrossRefGoogle Scholar
  24. Longuet-Higgins MS (1953) Mass transport in water waves. Phil Trans R Soc A 245(903):535–581. doi: 10.1098/rsta.1953.0006 zbMATHMathSciNetCrossRefGoogle Scholar
  25. Manneberg O, Vanherberghen B, Svennebring J, Hertz HM, Önfelt B, Wiklund M (2008) A three-dimensional ultrasonic cage for characterization of individual cells. Appl Phys Lett 93(6):063901. doi: 10.1063/1.2971030 CrossRefGoogle Scholar
  26. Muller PB, Barnkob R, Jensen MJH, Bruus H (2012) A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12:4617–4627. doi: 10.1039/C2LC40612H CrossRefGoogle Scholar
  27. Neild A, Oberti S, Radziwill G, Dual J (2007) Simultaneous positioning of cells into two-dimensional arrays using ultrasound. Biotechnol Bioeng 97(5):1335–1339. doi: 10.1002/bit.21315 CrossRefGoogle Scholar
  28. Nilsson J, Evander M, Hammarstrm B, Laurell T (2009) Review of cell and particle trapping in microfluidic systems. Anal Chim Acta 649(2):141–157. doi: 10.1016/j.aca.2009.07.017 CrossRefGoogle Scholar
  29. Nyborg WLM (1965) Physical acoustics IIB. Academic Press, New YorkGoogle Scholar
  30. Oberti S, Neild A, Quach R, Dual J (2009) The use of acoustic radiation forces to position particles within fluid droplets. Ultrasonics 49(1):47–52. doi: 10.1016/j.ultras.2008.05.002 CrossRefGoogle Scholar
  31. Ohlin M, Christakou AE, Frisk T, Önfelt B, Wiklund M (2013) Influence of acoustic streaming on ultrasonic particle manipulation in a 100-well ring-transducer microplate. J Micromech Microeng 23(035):008. doi: 10.1088/0960-1317/23/3/035008 Google Scholar
  32. Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T (2005) Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip 5:20–22. doi: 10.1039/B405748C CrossRefGoogle Scholar
  33. Phillips OM (1966) The dynamics of the upper ocean. Cambridge Univeristy Press, New YorkzbMATHGoogle Scholar
  34. Raeymaekers B, Pantea C, Sinha DN (2011) Manipulation of diamond nanoparticles using bulk acoustic waves. J Appl Phys 109(1):014317. doi: 10.1063/1.3530670 CrossRefGoogle Scholar
  35. Richardson JF, Harker JH, Backhurst JR (2002) Particle technology and separation processes. Butterworth Heinemann, WoburnGoogle Scholar
  36. Rogers P, Gralinski I, Galtry C, Neild A (2013) Selective particle and cell clustering at airliquid interfaces within ultrasonic microfluidic systems. Microfluid Nanofluidics 14(3–4):469–477. doi: 10.1007/s10404-012-1065-9 CrossRefGoogle Scholar
  37. Sajeesh P, Sen A (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluidics 17(1):1–52. doi: 10.1007/s10404-013-1291-9 CrossRefGoogle Scholar
  38. Spengler JF, Coakley WT, Christensen KT (2003) Microstreaming effects on particle concentration in an ultrasonic standing wave. AIChE J 49(11):2773–2782. doi: 10.1002/aic.690491110 CrossRefGoogle Scholar
  39. Urban AS, Carretero-Palacios S, Lutich AA, Lohmüller T, Feldmann J, Jäckel F (2014) Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives. Nanoscale 6:4458–4474. doi: 10.1039/C3NR06617G CrossRefGoogle Scholar
  40. Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems. Recent developments. Anal Chem 76(12):3373–3386. doi: 10.1021/ac040063q CrossRefGoogle Scholar
  41. Walker R, Gralinski I, Keong Lay K, Alan T, Neild A (2012) Particle manipulation using an ultrasonic micro-gripper. Appl Phys Lett 101(16):163504. doi: 10.1063/1.4759127 CrossRefGoogle Scholar
  42. Whitehill JD, Gralinski I, Joiner D, Neild A (2012) Nanoparticle manipulation within a microscale acoustofluidic droplet. J Nanoparticle Res 14(11):1–11. doi: 10.1007/s11051-012-1223-8 Google Scholar
  43. Wunenburger R, Carrier V, Garrabos Y (2002) Periodic order induced by horizontal vibrations in a two-dimensional assembly of heavy beads in water. Phys Fluids 14(7):2350–2359. doi: 10.1063/1.1483842 CrossRefGoogle Scholar
  44. Xuan X, Zhu J, Church C (2010) Particle focusing in microfluidic devices. Microfluid Nanofluidics 9(1):1–16. doi: 10.1007/s10404-010-0602-7 CrossRefGoogle Scholar
  45. Zoueshtiagh F, Thomas PJ, Thomy V, Merlen A (2008) Micrometric granular ripple patterns in a capillary tube. Phys Rev Lett 100(054):501. doi: 10.1103/PhysRevLett.100.054501 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Prashant Agrawal
    • 1
  • Prasanna S. Gandhi
    • 2
  • Adrian Neild
    • 3
  1. 1.IITB Monash Research AcademyIndian Institute of Technology BombayMumbaiIndia
  2. 2.Suman Mashruwala Advanced Microengineering Laboratory, Department of Mechanical EngineeringIndian Institute of Technology BombayMumbaiIndia
  3. 3.Laboratory for Micro Systems, Mechanical and Aerospace EngineeringMonash UniversityMelbourneAustralia

Personalised recommendations