Skip to main content
Log in

Hydrodynamics of flow through microchannels with hydrophobic strips

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The hydrodynamics of flow through two-dimensional parallel-plate microchannels with periodic hydrophobic strips under finite Reynolds numbers is studied using dissipative particle dynamics simulations. The hydrophobic and hydrophilic regions are modeled using partial-slip and no-slip boundary conditions, respectively. We first consider channels with symmetric hydrophobic strips on both walls. It was observed that the volume flow rate through the channel is nonlinearly dependent on the area fraction of the hydrophobic strips. Next, we study flow in an antisymmetric channel in which the hydrophobic strips on the two channel walls are staggered with an axial offset. We observe that, in contrast to the symmetric channels, the presence of antisymmetric strips cause a finite velocity component towards the center of the channel. This cross-stream velocity field may potentially prove useful for separating second-phase particles or enhancing mixing in such microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Asmolov E, Zhou J, Schmid F, Vinogradova O (2013) Effective slip-length tensor for a flow over weakly slipping stripes. Phys Rev E 88(023):004

    Google Scholar 

  • Bazant MZ, Vinogradova OI (2008) Tensorial hydrodynamic slip. J Fluid Mech 613:125–134

    Article  MathSciNet  MATH  Google Scholar 

  • Belyaev A, Vinogradova O (2010) Effective slip in pressure-driven flow past super-hydrophobic stripes. J Fluid Mech 652:489–499

    Article  MATH  Google Scholar 

  • Benzi R, Biferale L, Sbragaglia M, Succi S, Toschi F (2006) Mesoscopic modelling of heterogeneous boundary conditions for microchannel flows. J Fluid Mech 548:257–280

    Article  Google Scholar 

  • Bocquet L, Barrat JL (1994) Hydrodynamic boundary conditions, correlation functions, and kubo relations for confined fluids. Phys Rev E 49(4):3079

    Article  Google Scholar 

  • Chakraborty S, Anand KD (2008) Implications of hydrophobic interactions and consequent apparent slip phenomenon on the entrance region transport of liquids through microchannels. Phys Fluids 20(4):043,602

    Article  Google Scholar 

  • Cheng Y, Teo C, Khoo B (2009) Microchannel flows with superhydrophobic surfaces: effects of reynolds number and pattern width to channel height ratio. Phys Fluids 21(12):1–12

    Article  Google Scholar 

  • Choi CH, Kim CJ (2006) Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett 96(066):001

    Google Scholar 

  • Choi CH, Ulmanella U, Kim J, Ho CM, Kim CJ (2006) Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys Fluids 18(8):087,105

    Article  Google Scholar 

  • Davies J, Maynes D, Webb B, Woolford B (2006) Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs. Phys Fluids 18(8):087110

    Article  Google Scholar 

  • Fan X, Phan-Thien N, Yong NT, Wu X, Xu D (2003) Microchannel flow of a macromolecular suspension. Phys Fluids 15(1):11–21

    Article  Google Scholar 

  • Groot R, Warren P (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435

    Article  Google Scholar 

  • Harting J, Kunert C, Hyvluoma J (2010) Lattice boltzmann simulations in microfluidics probing the no-slip boundary condition in hydrophobic, rough, and surface nanobubble laden microchannels. Microfluid Nanofluid 8(1):1–10

    Article  Google Scholar 

  • Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155–160

    Article  Google Scholar 

  • John Philip R (1972a) Flows satisfying mixed no-slip and no-shear conditions. Zeitschrift fr angewandte Mathematik und Physik ZAMP 23:353–372

    Article  MATH  Google Scholar 

  • John Philip R (1972b) Integral properties of flows satisfying mixed no-slip and no-shear conditions. Zeitschrift fr angewandte Mathematik und Physik ZAMP 23:960–968

    Article  MATH  Google Scholar 

  • Lauga E, Stone H (2003) Effective slip in pressure-driven stokes flow. J Fluid Mech 489:55–77

    Article  MathSciNet  MATH  Google Scholar 

  • Lauga E, Brenner MP, Stone HA (2007) Microfluidics: the no-slip boundary condition. Handbook of Experimental Fluid Dynamics pp 1219–1240

  • Lee C, Choi CH, Kim CJ (2008) Structured surfaces for a giant liquid slip. Phys Rev Lett 101(6):064,501

    Article  Google Scholar 

  • Moeendarbary E, Ng T, Zangeneh M (2009) Dissipative particle dynamics: introduction, methodology and complex fluid applications—a review. Int J App Mech 1(4):737–763

    Article  Google Scholar 

  • Navier CLMH (1823) Memoire sur les lois du mouvement des fluides. Mem Acad R Sci Inst France 6:389–440

    Google Scholar 

  • Ou J, Perot B, Rothstein J (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16(12):4635–4643

    Article  Google Scholar 

  • Ou J, Moss G, Rothstein J (2007) Enhanced mixing in laminar flows using ultrahydrophobic surfaces. Phys Rev E 76(1):016,304

    Article  Google Scholar 

  • Pan W, Pivkin IV, Karniadakis GE (2008) Single-particle hydrodynamics in DPD: a new formulation. Europhys Lett 84(1):10,012

    Article  MathSciNet  Google Scholar 

  • Pivkin IV, Karniadakis GE (2006) Controlling density fluctuations in wall-bounded dissipative particle dynamics systems. Phys Rev Lett 96(206):001

    Google Scholar 

  • Ranjith SK, Patnaik BSV, Vedantam S (2013a) Hydrodynamics of the developing region in hydrophobic microchannels: a dissipative particle dynamics study. Phys Rev E 87(033):303

    Google Scholar 

  • Ranjith SK, Patnaik BSV, Vedantam S (2013b) No-slip boundary condition in finite-size dissipative particle dynamics. J Comput Phys 232(1):174–188

    Article  MathSciNet  Google Scholar 

  • Ranjith SK, Patnaik BSV, Vedantam S (2014) Transport of dna in hydrophobic microchannels: a dissipative particle dynamics simulation. Soft Matter 10:4184–4191

    Article  Google Scholar 

  • Rothstein J (2010) Slip on superhydrophobic surfaces. Ann Rev Fluid Mech 42:89–109

    Article  Google Scholar 

  • Schmieschek S, Belyaev A, Harting J, Vinogradova O (2012) Tensorial slip of superhydrophobic channels. Phys Rev E 85(1):016324

    Article  Google Scholar 

  • Schönecker C, Baier T, Hardt S (2014) Influence of the enclosed fluid on the flow over a microstructured surface in the cassie state. J Fluid Mech 740:168–195

    Article  MathSciNet  Google Scholar 

  • Smiatek J, Allen M, Schmid F (2008) Tunable-slip boundaries for coarse-grained simulations of fluid flow. Eur Phys J E Soft Matter Biol Phys 26:115–122

    Article  Google Scholar 

  • Teo C, Khoo B (2009) Analysis of stokes flow in microchannels with superhydrophobic surfaces containing a periodic array of micro-grooves. Microfluid Nanofluid 7(3):353–382

    Article  Google Scholar 

  • Tesar V (2007) Pressure-driven microfluidics. Artech House, Boston

    Google Scholar 

  • Tretheway D, Meinhart C (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14(3):L9–L12

    Article  Google Scholar 

  • Tretheway DC, Meinhart CD (2004) A generating mechanism for apparent fluid slip in hydrophobic microchannels. Phys Fluids 16(5):1509–1515

    Article  Google Scholar 

  • Watanabe K, Udagawa Y, Udagawa H (1999) Drag reduction of newtonian fluid in a circular pipe with a highly water-repellent wall. J Fluid Mech 381:225–238

    Article  MATH  Google Scholar 

  • Zhou J, Belyaev A, Schmid F, Vinogradova O (2012) Anisotropic flow in striped superhydrophobic channels. J Chem Phys 136(19):194706

    Article  Google Scholar 

Download references

Acknowledgments

We express our sincere gratitude to the free software development communities of : GNU/Linux (Ubuntu), Gfortran, GNU-Octave, Mayavi2, and Gnuplot for providing excellent platforms for our simulations. The authors thank the referees for their valuable comments and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. V. Patnaik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjith, S.K., Vedantam, S. & Patnaik, B.S.V. Hydrodynamics of flow through microchannels with hydrophobic strips. Microfluid Nanofluid 19, 547–556 (2015). https://doi.org/10.1007/s10404-015-1580-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1580-6

Keywords

Navigation