Skip to main content

On-chip investigation of the hydrodynamic dispersion in rectangular microchannels

Abstract

Fluorescein dispersion in two rectangular microchannels with different width-to-depth ratios is studied experimentally. The flow is laminar, and no-slip boundary condition is satisfied. Factors that may influence the experimental results are discussed with the aid of three-dimensional numerical simulation. Numerical simulation indicates that the serpentine configuration and the detection location have negligible effect on the dispersion coefficient under current experimental conditions. Experimental results of the dispersion coefficient were compared with theoretical results for rectangular channels with the same width-to-depth ratios as the actual microchannels. The comparison indicates that two theories provide a good prediction of the dispersion behavior in rectangular channels while two other theories using approximate solutions of the mass transfer equation are inaccurate. The theoretical dispersion coefficient for parallel-plate channels and that for rectangular channels with large width-to-depth ratios reported in the literature are also compared with experimental results. An obvious deviation is observed. These results are expected to help the design of micro gas chromatographic columns or other devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ajdari A, Bontoux N, Stone HA (2006) Hydrodynamic dispersion in shallow microchannels: the effect of cross-sectional shape. Anal Chem 78:387–392. doi:10.1021/ac0508651

    Article  Google Scholar 

  2. Ali S, Ashraf-Khorassani M, Taylor LT, Agah M (2009) MEMS-based semi-packed gas chromatography columns. Sensor Actuatators B Chem 141:309–315. doi:10.1016/j.snb.2009.06.022

    Article  Google Scholar 

  3. Anh H, Brandani S (2005) Analysis of breakthrough dynamics in rectangular channels of arbitrary aspect ratio. AIChE J 51:1980–1990. doi:10.1002/aic.10432

    Article  Google Scholar 

  4. Bontoux N, Pepin A, Chen Y, Ajdari A, Stone HA (2006) Experimental characterization of hydrodynamic dispersion in shallow microchannels. Lab Chip 6:930–935. doi:10.1039/B518130E

    Article  Google Scholar 

  5. Callewaert M, De Malsche W, Ottevaere H, Thienpont H, Desmet G (2014) Assessment and numerical search for minimal Taylor–Aris dispersion in micro-machined channels of nearly rectangular cross-section. J Chromatogr A 1368:70–81. doi:10.1016/j.chroma.2014.09.009

    Article  Google Scholar 

  6. Co Ng (2011) How does wall slippage affect hydrodynamic dispersion? Microfluid Nanofluid 10:47–57. doi:10.1007/s10404-010-0645-9

    Article  Google Scholar 

  7. Culbertson CT, Jacobson SC, Ramsey JM (2002) Diffusion coefficient measurements in microfluidic devices. Talanta 56:365–373. doi:10.1016/S0039-9140(01)00602-6

    Article  Google Scholar 

  8. Dutta D, Leighton DT (2001) Dispersion reduction in pressure-driven flow through microetched channels. Anal Chem 73:504–513. doi:10.1021/ac0008385

    Article  Google Scholar 

  9. Dutta D, Leighton DT (2003) Dispersion in large aspect ratio microchannels for open-channel liquid chromatography. Anal Chem 75:57–70. doi:10.1021/ac020179r

    Article  Google Scholar 

  10. Dutta D, Ramachandran A, Leighton DT (2006) Effect of channel geometry on solute dispersion in pressure-driven microfluidic systems. Microfluid Nanofluid 2:275–290. doi:10.1007/s10404-005-0070-7

    Article  Google Scholar 

  11. Giddings JC (1961) The role of lateral diffusion as a rate-controlling mechanism in chromatography. J Chromatogr 5:46–60. doi:10.1016/S0021-9673(01)92815-8

    Article  Google Scholar 

  12. Giddings JC, Seager SL, Stucki LR, Stewart GH (1960) Plate height in gas chromatography. Anal Chem 32:867–870. doi:10.1021/ac60163a043

    Article  Google Scholar 

  13. Golay MJE (1981) The height equivalent to a theoretical plate of retentionless rectangular tubes. J Chromatogr A 216:1–8. doi:10.1016/S0021-9673(00)82330-4

    Article  Google Scholar 

  14. Gzil P, Vervoort N, Baron GV, Desmet G (2003) Advantages of perfectly ordered 2-D porous pillar arrays over packed bed columns for LC separations: a theoretical analysis. Anal Chem 75:6244–6250. doi:10.1021/ac034345m

    Article  Google Scholar 

  15. He K, Retterer ST, Srijanto BR, Conrad JC, Krishnamoorti R (2014) Transport and dispersion of nanoparticles in periodic nanopost arrays. ACS Nano 8:4221–4227. doi:10.1021/nn404497z

    Article  Google Scholar 

  16. Joly L, Ybert C, Bocquet L (2006) Probing the nanohydrodynamics at liquid-solid interfaces using thermal motion. Phys Rev Lett 96:046101. doi:10.1103/PhysRevLett96.046101

    Article  Google Scholar 

  17. Joseph P, Tabeling P (2005) Direct measurement of the apparent slip length. Phys Rev E 71:035303. doi:10.1103/PhysRevE.71.035303

    Article  Google Scholar 

  18. Kim MM, Huang Y, Choi K, Hidrovo CH (2014) The improved resistance of PDMS to pressure-induced deformation and chemical solvent swelling for microfluidic devices. Microelectron Eng 124:66–75. doi:10.1016/j.mee.2014.04.041

    Article  Google Scholar 

  19. Liang D, Peng Q, Mitchelson K, Guan X, Xing W, Cheng J (2007) A simple and efficient approach for calculating permeability coefficients and HETP for rectangular columns. Lab Chip 7:1062–1073. doi:10.1039/B706720H

    Article  Google Scholar 

  20. Poppe H (2002) Mass transfer in rectangular chromatographic channels. J Chromatogr A 948:3–17. doi:10.1016/S0021-9673(01)01372-3

    Article  Google Scholar 

  21. Radadia AD, Morgan RD, Masel RI, Shannon MA (2009) Partially buried microcolumns for micro gas analyzers. Anal Chem 81:3471–3477. doi:10.1021/ac8027382

    Article  Google Scholar 

  22. Reidy S, Lambertus G, Reece J, Sacks R (2006) High-performance, static-coated silicon microfabricated columns for gas chromatography. Anal Chem 78:2623–2630. doi:10.1021/ac051846u

    Article  Google Scholar 

  23. Rush BM, Dorfman KD, Brenner H, Kim S (2002) Dispersion by pressure-driven flow in serpentine microfluidic channels. Ind Eng Chem Res 41:4652–4662. doi:10.1021/ie020149e

    Article  Google Scholar 

  24. Spangler GE (1998) Height equivalent to a theoretical plate theory for rectangular GC columns. Anal Chem 70:4805–4816. doi:10.1021/ac980328z

    Article  Google Scholar 

  25. Spangler GE (2001) Relationships for modeling the performance of rectangular gas chromatographic columns. J Microcolumn Sep 13:285–292. doi:10.1002/mcs.10008

    Article  Google Scholar 

  26. Vikhansky A (2009) Taylor dispersion in shallow micro-channels: aspect ratio effect. Microfluid Nanofluid 7:91–95. doi:10.1007/s10404-008-0366-5

    Article  Google Scholar 

  27. Yan XH, Yang J, Wang QW, Liu YZ (2013) Theoretical tools for predicting optimal cross-sectional shapes in micro-gas chromatography. J Sep Sci 36:1537–1544. doi:10.1002/jssc.201201092

    Article  Google Scholar 

  28. Zareian-Jahromi MA, Ashraf-Khorassani M, Taylor LT, Agah M (2008) (2009) Design, modeling, and fabrication of MEMS-based multicapillary gas chromatographic columns. J Microelectromech S 18:28–37. doi:10.1109/JMEMS.2007267

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Hongzhong Liu and Xueyong Wei for assistance with the fabrication of microchannels and fluorescein dispersion experiment. The authors greatly acknowledge the financial supports from the Natural Science Foundation of China (No. 21206130), the Fundamental Research Funds for the Central Universities of China and the supports from State Key Laboratory for Manufacturing Systems Engineering of Xi’an Jiaotong University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Yan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Liu, M., Zhang, J. et al. On-chip investigation of the hydrodynamic dispersion in rectangular microchannels. Microfluid Nanofluid 19, 435–445 (2015). https://doi.org/10.1007/s10404-015-1576-2

Download citation

Keywords

  • Dispersion
  • Rectangular microchannels
  • Chip
  • Fluorescein