A convenient direct laser writing system for the creation of microfluidic masters

Abstract

We describe a homebuilt direct laser writing (DLW) system centered on a fluorescence microscope as an alternative means for the creation of microfluidic masters. Such masters are often the starting point of microanalytical platforms and are usually made using transparency masks, which are inexpensive and very convenient. However, these masks can become expensive if features are <25 μm. The linewidth of features made by our DLW system spans from submicron to a millimeter depending on the objective lens, the focal position, the stage speed, and the laser power used. By adjusting these parameters during fabrication, we show that large and small features can be integrated in the same sample. Masters made by DLW were used to create polydimethylsiloxane microfluidic devices and also to perform microcontact printing of alkanethiol monolayers on gold. We also show that registration between sequential patterning steps is readily accomplished and can be used to repair structures or to add features to an existing pattern. The components required to modify a stage-equipped fluorescence microscope into our DLW system are commercially available for under $5000; we contend that this system is a convenient alternative to mask-based lithography for prototyping lab-on-a-chip devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Baldacchini T, LaFratta C, Farrer R, Teich M, Saleh B, Naughton M, Fourkas J (2004) Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization. J Appl Phys 95:6072–6076. doi:10.1063/1.1728296

    Article  Google Scholar 

  2. Chatwin C, Farsari M, Huang S, Heywood M, Birch P, Young R, Richardson J (1998) UV microstereolithography system that uses spatial light modulator technology. Appl Opt 37:7514–7522. doi:10.1364/AO.37.007514

    Article  Google Scholar 

  3. Chung SE, Lee SA, Kim J, Kwon S (2009) Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics. Lab Chip 9:2845–2850. doi:10.1039/b903760h

    Article  Google Scholar 

  4. Comina G, Suska A, Filippini D (2014) Low cost lab-on-a-chip prototyping with a consumer grade 3D printer. Lab Chip 14:2978–2982. doi:10.1039/c4lc00394b

    Article  Google Scholar 

  5. Di Carlo D, Edd JF, Irimia D, Tompkins R, Toner M (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80:2204–2211. doi:10.1021/ac702283m

    Article  Google Scholar 

  6. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984. doi:10.1021/ac980656z

    Article  Google Scholar 

  7. Dweik M, Stringer RC, Dastider SG, Wu Y, Almasri M, Barizuddin S (2012) Specific and targeted detection of viable Escherichia coli O157:H7 using a sensitive and reusable impedance biosensor with dose and time response studies. Talanta 94:84–89. doi:10.1016/j.talanta.2012.02.056

    Article  Google Scholar 

  8. Erkal JL, Selimovic A, Gross BC, Lockwood S, Walton E, McNamara S, Martin R, Spence D (2014) 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14:2023–2032. doi:10.1039/c4lc00171k

    Article  Google Scholar 

  9. Fischer J, Wegener M (2012) Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev 7:22–44. doi:10.1002/lpor.201100046

    Article  Google Scholar 

  10. Gan Z, Cao Y, Evans RA, Gu M (2013) Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun 4:1–7. doi:10.1038/ncomms3061

    Google Scholar 

  11. Guijt RM, Breadmore MC (2008) Maskless photolithography using UV LEDs. Lab Chip 8:1402–1404. doi:10.1039/b800465j

    Article  Google Scholar 

  12. Itoga K, Kobayashi J, Tsuda Y, Yamato M, Okano T (2008) Second-generation maskless photolithography device for surface micropatterning and microfluidic channel fabrication. Anal Chem 80:1323–1327. doi:10.1021/ac702208d

    Article  Google Scholar 

  13. Jenness NJ, Hill RT, Hucknall A, Chilkoti A, Clark R (2010) A versatile diffractive maskless lithography for single-shot and serial microfabrication. Opt Exp 18:11754–11762. doi:10.1364/OE.18.011754

    Article  Google Scholar 

  14. Kaehr B, Shear JB (2007) Mask-directed multiphoton lithography. J Am Chem Soc 129:1904–1905. doi:10.1021/ja068390y

    Article  Google Scholar 

  15. Kaehr B, Ertaş N, Nielson R, Allen R, Hill R, Plenert M, Shear J (2006) Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser. Anal Chem 78:3198–3202. doi:10.1021/ac052267s

    Article  Google Scholar 

  16. Kumi G, Yanez CO, Belfield KD, Fourkas JT (2010) High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios. Lab Chip 10:1057–1060. doi:10.1039/b923377f

    Article  Google Scholar 

  17. LaFratta CN, Fourkas J, Baldacchini T, Farrer R (2007) Multiphoton fabrication. Angew Chem Int Ed 46:6238–6258. doi:10.1002/anie.200603995

    Article  Google Scholar 

  18. Li L, Gattass R, Gershgoren E, Hwang H, Fourkas J (2009) Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324:910–913. doi:10.1126/science.1168996

    Article  Google Scholar 

  19. Libioulle L, Bietsch A, Schmid H, Michel B, Delamarche E (1999) Contact-inking stamps for microcontact printing of alkanethiols on gold. Langmuir 15:300–304. doi:10.1021/la980978y

    Article  Google Scholar 

  20. Lim D, Kamotani Y, Cho B, Mazumder J (2003) Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method. Lab Chip 3:318–323. doi:10.1039/b308452c

    Article  Google Scholar 

  21. Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC Press, Boca Raton

    Google Scholar 

  22. Maruo S, Ikuta K (2000) Three-dimensional microfabrication by use of single-photon-absorbed polymerization. Appl Phys Lett 76:2656–2658. doi:10.1063/1.126742

    Article  Google Scholar 

  23. Nielson R, Kaehr B, Shear JB (2009) Microreplication and design of biological architectures using dynamic-mask multiphoton lithography. Small 5:120–125. doi:10.1002/smll.200801084

    Article  Google Scholar 

  24. Nuzzo RG, Fusco FA, Allara DL (1987) Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. J Am Chem Soc 109:2358–2368. doi:10.1021/ja00242a020

    Article  Google Scholar 

  25. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscalepatterning. Nat Protoc 5:491–502. doi:10.1038/nprot.2009.234

    Article  Google Scholar 

  26. Thiel M, Fischer J, von Freymann G, Wegener M (2010) Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm. Appl Phys Lett 97:221102. doi:10.1063/1.3521464

    Article  Google Scholar 

  27. Varshney M, Li Y (2009) Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. Biosens Bioelectr 24:2951–2960. doi:10.1016/j.bios.2008.10.001

    Article  Google Scholar 

  28. Waldbaur A, Carneiro B, Hettich P, Wilhelm E, Rapp B (2013) Computer-aided microfluidics (CAMF): from digital 3D-CAD models to physical structures within a day. Microfluid Nanofluid 15:625–635. doi:10.1007/s10404-013-1177-x

    Article  Google Scholar 

  29. Wang L, Wang L, Yin H, Xing W, Yu Z, Guo M, Cheng J (2010) Real-time, label-free monitoring of the cell cycle with a cellular impedance sensing chip. Biosens Bioelectr 25:990–995. doi:10.1016/j.bios.2009.09.012

    Article  Google Scholar 

  30. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed Engl 37:550–575. doi:10.1002/(SICI)1521-3773(19980316)37:5<550:AID-ANIE550>3.0.CO;2-G

    Article  Google Scholar 

  31. Xia Y, Zhao X-M, Kim E, Whitesides GM (1995) A selective etching solution for use with patterned self-assembled monolayers of alkanethiolates on gold. Chem Mater 7:2332–2337. doi:10.1021/cm00060a023

    Article  Google Scholar 

  32. Zhang J, Yan S, Sluyter R, Li W, Alici G, Nguyen N-T (2014a) Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel. Sci Rep 4:4527. doi:10.1038/srep04527

    Google Scholar 

  33. Zhang Z, Xu J, Hong B, Chen X (2014b) The effect of 3D channel geometry on CTC passing pressure—towards deformability-based cancer cell separation. Lab Chip 14:2576–2584. doi:10.1039/c4lc00301b

    Article  Google Scholar 

  34. Zhao DS, Roy B, McCormick MT, Kuhr W, Brazill S (2003) Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining. Lab Chip 3:93–99. doi:10.1039/b300577a

    Article  Google Scholar 

  35. Zhao S, Cong H, Pan T (2009) Direct projection on dry-film photoresist (DP2): do-it-yourself three-dimensional polymer microfluidics. Lab Chip 9:1128–1132. doi:10.1039/b817925e

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge funding from Bard College and the Bard Summer Research Institute that supported this work. We also acknowledge help from Prof. Paul Cadden-Zimansky for his assistance with optical and electron microscopy and Tommaso Baldacchini and Mael Manesse for their help in preparing this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher N. LaFratta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3691 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

LaFratta, C.N., Simoska, O., Pelse, I. et al. A convenient direct laser writing system for the creation of microfluidic masters. Microfluid Nanofluid 19, 419–426 (2015). https://doi.org/10.1007/s10404-015-1574-4

Download citation

Keywords

  • Microfluidics
  • Soft lithography
  • Direct laser writing
  • Microtransfer molding