Skip to main content

Fractionation by shape in deterministic lateral displacement microfluidic devices

Abstract

We investigate the migration of particles of different geometrical shapes and sizes in a scaled-up model of a gravity-driven deterministic lateral displacement (g-DLD) device. Specifically, particles move through a square array of cylindrical posts as they settle in a quiescent fluid under the action of gravity. We performed experiments that cover a broad range of orientations of the driving force (gravity) with respect to the columns (or rows) in the square array of posts. We observe that as the forcing angle increases, particles initially locked to move parallel to the columns in the array begin to move across the columns of obstacles and migrate at angles different from zero. We measure the probability that a particle would move across a column of obstacles, and define the critical angle θ c as the forcing angle at which this probability is 1/2. We show that critical angle depends on both particle size and shape, thus enabling both size- and shape-based separations. Finally, we show that using the diameter of the inscribed sphere as the characteristic size of the particles, the corresponding critical angle becomes independent of particle shape and the relationship between them is linear. This linear and possibly universal behavior of the critical angle as a function of the diameter of the inscribed sphere of the particles could provide guidance in the design and optimization of g-DLD devices used for shape-based separation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Akbulut O, Mace CR, Martinez RV et al (2012) Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett 12:4060–4064. doi:10.1021/nl301452x

    Article  Google Scholar 

  2. Balvin M, Sohn E, Iracki T et al (2009) Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Phys Rev Lett 103:078301. doi:10.1103/PhysRevLett.103.078301

    Article  Google Scholar 

  3. Beech JP, Holm SH, Adolfsson K, Tegenfeldt JO (2012) Sorting cells by size, shape and deformability. Lab Chip 12:1048. doi:10.1039/c2lc21083e

    Article  Google Scholar 

  4. Bogunovic L, Fliedner M, Eichhorn R et al (2012) Chiral particle separation by a nonchiral microlattice. Phys Rev Lett 109:100603. doi:10.1103/PhysRevLett.109.100603

    Article  Google Scholar 

  5. Bowman T, Frechette J, Drazer G (2012) Force driven separation of drops by deterministic lateral displacement. Lab Chip 12:2903. doi:10.1039/c2lc40234c

    Article  Google Scholar 

  6. Bowman TJ, Drazer G, Frechette J (2013) Inertia and scaling in deterministic lateral displacement. Biomicrofluidics 7:064111. doi:10.1063/1.4833955

    Article  Google Scholar 

  7. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. doi:10.1021/cr030063a

    Article  Google Scholar 

  8. Davis JA, Inglis DW, Morton KJ et al (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci 103:14779–14784. doi:10.1073/pnas.0605967103

    Article  Google Scholar 

  9. Devendra R, Drazer G (2012) Gravity driven deterministic lateral displacement for particle separation in microfluidic devices. Anal Chem 84:10621–10627. doi:10.1021/ac302074b

    Article  Google Scholar 

  10. Devendra R, Drazer G (2014) Deterministic fractionation of binary suspensions moving past a line of microposts. Microfluid Nanofluidics 17:519–526. doi:10.1007/s10404-013-1328-0

    Article  Google Scholar 

  11. DuBose J, Xinyu Lu, Patel S et al (2014) Microfluidic electrical sorting of particles based on shape in a spiral microchannel. Biomicrofluidics 8:1–8. doi:10.1063/1.4862355

    Article  Google Scholar 

  12. Giddings JC (1991) Unified separation science. Wiley, New York

    Google Scholar 

  13. Green JV, Radisic M, Murthy SK (2009) Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal Chem 81:9178–9182. doi:10.1021/ac9018395

    Article  Google Scholar 

  14. Herrmann J, Karweit M, Drazer G (2009) Separation of suspended particles in microfluidic systems by directional locking in periodic fields. Phys Rev E 79:061404. doi:10.1103/PhysRevE.79.061404

    Article  Google Scholar 

  15. Holm SH, Beech JP, Barrett MP, Tegenfeldt JO (2011) Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11:1326–1332. doi:10.1039/C0LC00560F

    Article  Google Scholar 

  16. Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990. doi:10.1126/science.1094567

    Article  Google Scholar 

  17. Huang R, Barber TA, Schmidt MA et al (2008) A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenat Diagn 28:892–899. doi:10.1002/pd.2079

    Article  Google Scholar 

  18. Inglis DW, Morton KJ, Davis JA et al (2008) Microfluidic device for label-free measurement of platelet activation. Lab Chip 8:925–931. doi:10.1039/B800721G

    Article  Google Scholar 

  19. Inglis DW, Herman N, Vesey G (2010) Highly accurate deterministic lateral displacement device and its application to purification of fungal spores. Biomicrofluidics 4:024109. doi:10.1063/1.3430553

    Article  Google Scholar 

  20. Inglis DW, Lord M, Nordon RE (2011) Scaling deterministic lateral displacement arrays for high throughput and dilution-free enrichment of leukocytes. J Micromech Microeng 21:054024. doi:10.1088/0960-1317/21/5/054024

    Article  Google Scholar 

  21. Jin R, Cao Y, Mirkin CA (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903. doi:10.1126/science.1066541

    Article  Google Scholar 

  22. Joensson HN, Uhlén M, Svahn HA (2011) Droplet size based separation by deterministic lateral displacement—separating droplets by cell-induced shrinking. Lab Chip 11:1305–1310. doi:10.1039/C0LC00688B

    Article  Google Scholar 

  23. Koplik J, Drazer G (2010) Nanoscale simulations of directional locking. Phys Fluids 22:052005. doi:10.1063/1.3429297

    Article  Google Scholar 

  24. Kowalczyk B, Lagzi I, Grzybowski BA (2011) Nanoseparations: strategies for size and/or shape-selective purification of nanoparticles. Curr Opin Colloid Interface Sci 16:135–148. doi:10.1016/j.cocis.2011.01.004

    Article  Google Scholar 

  25. Li N, Kamei DT, Chih-Ming Ho (2007) On-chip continuous blood cell subtype separation by deterministic lateral displacement. In: 2nd IEEE international conference on nano/micro engineered and molecular systems, 2007. NEMS’07. IEEE, pp 932–936

  26. Loutherback K, D’Silva J, Liu L et al (2012) Deterministic separation of cancer cells from blood at 10 mL/min. AIP Adv 2:042107. doi:10.1063/1.4758131

    Article  Google Scholar 

  27. Luo M, Sweeney F, Risbud SR et al (2011) Irreversibility and pinching in deterministic particle separation. Appl Phys Lett 99:064102. doi:10.1063/1.3617425

    Article  Google Scholar 

  28. Morton KJ, Loutherback K, Inglis DW et al (2008a) Crossing microfluidic streamlines to lyse, label and wash cells. Lab Chip 8:1448–1453

    Article  Google Scholar 

  29. Morton K, Loutherback K, Inglis D et al (2008b) Hydrodynamic metamaterials: microfabricated arrays to steer, refract, and focus streams of biomaterials. Proc Natl Acad Sci USA 105:7434–7438. doi:10.1073/pnas.0712398105

    Article  Google Scholar 

  30. Narayanan R, El-Sayed MA (2004) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4:1343–1348. doi:10.1021/nl0495256

    Article  Google Scholar 

  31. Park S, Jang J, Cheon J et al (2008) Shape-dependent compressibility of TiO 2 anatase nanoparticles. J Phys Chem C 112:9627–9631. doi:10.1021/jp801555a

    Article  Google Scholar 

  32. Riahifar R, Marzbanrad E, Raissi B et al (2011) Sorting ZnO particles of different shapes with low frequency AC electric fields. Mater Lett 65:632–635. doi:10.1016/j.matlet.2010.08.029

    Article  Google Scholar 

  33. Risbud SR, Drazer G (2013) Trajectory and distribution of suspended non-Brownian particles moving past a fixed spherical or cylindrical obstacle. J Fluid Mech 714:213–237. doi:10.1017/jfm.2012.468

    MATH  MathSciNet  Article  Google Scholar 

  34. Risbud SR, Drazer G (2014) Directional locking in deterministic lateral-displacement microfluidic separation systems. Phys Rev E 90:012302. doi:10.1103/PhysRevE.90.012302

    Article  Google Scholar 

  35. Risbud SR, Luo M, Fréchette J, Drazer G (2013) Analysis of the trajectory of a sphere moving through a geometric constriction. Phys Fluids 25:062001. doi:10.1063/1.4809729

    Article  Google Scholar 

  36. Sharma V, Park K, Srinivasarao M, El-Sayed MA (2009) Shape separation of gold nanorods using centrifugation. Proc Natl Acad Sci USA 106:4981–4985. doi:10.1073/pnas.0800599106

    Article  Google Scholar 

  37. Shin YJ, Ringe E, Personick ML et al (2013) Centrifugal shape sorting and optical response of polyhedral gold nanoparticles. Adv Mater 25:4023–4027. doi:10.1002/adma.201301278

    Article  Google Scholar 

  38. Sugaya S, Yamada M, Seki M (2011) Observation of nonspherical particle behaviors for continuous shape-based separation using hydrodynamic filtration. Biomicrofluidics 5:024103. doi:10.1063/1.3580757

    Article  Google Scholar 

  39. Zeming KK, Ranjan S, Zhang Y (2013) Rotational separation of non-spherical bioparticles using I-shaped pillar arrays in a microfluidic device. Nat Commun 4:1625. doi:10.1038/ncomms2653

    Article  Google Scholar 

  40. Zhang B, Green JV, Murthy SK, Radisic M (2012) Label-free enrichment of functional cardiomyocytes using microfluidic deterministic lateral flow displacement. PLoS One 7:e37619. doi:10.1371/journal.pone.0037619

    Article  Google Scholar 

  41. Zheng S, Yung R, Yu-Chong Tai, Kasdan H (2005) Deterministic lateral displacement MEMS device for continuous blood cell separation. In: 18th IEEE international conference on micro electro mechanical systems, 2005. MEMS 2005, pp 851–854

Download references

Acknowledgments

This work was partially supported by the National Science Foundation Grant No. CBET-1339087.

Author information

Affiliations

Authors

Corresponding author

Correspondence to German Drazer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Budzan, K. & Drazer, G. Fractionation by shape in deterministic lateral displacement microfluidic devices. Microfluid Nanofluid 19, 427–434 (2015). https://doi.org/10.1007/s10404-015-1572-6

Download citation

Keywords

  • Reynolds Number
  • Spherical Particle
  • Critical Angle
  • Nominal Size
  • Obstacle Array