Skip to main content
Log in

Surface acoustic wave controlled integrated band-pass filter

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We introduce a microfluidic band-pass filter for particles that is fully integrated in a polydimethylsiloxane-based microchannel device. This acoustic filter allows a continuous and label-free separation of particles. To demonstrate the functionality, mixtures of particles with different sizes are exposed to propagating surface acoustic waves generated by two laterally displaced interdigitated transducers, one on each side of the microchannel. Dependent on the frequency used, a specific size or even a size range of particles can be extracted. We sort particles of sizes of ~1–10 µm and estimate the size resolution to be smaller than ∆r < 0.88 µm. We examine the performance of the device and achieve a throughput of ~105 particles/s with an efficiency as high as 99 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams JD, Soh HT (2010) Tunable acoustophoretic band-pass particle sorter. Appl Phys Lett 97:2–4. doi:10.1063/1.3467259

    Google Scholar 

  • Adams JD, Kim U, Soh HT (2008) Multitarget magnetic activated cell sorter. Proc Natl Acad Sci 105:18165–18170. doi:10.1073/pnas.0809795105

    Article  Google Scholar 

  • Auroux P-A, Iossifidis D, Reyes DR, Manz A (2002a) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636

    Article  Google Scholar 

  • Auroux P-A, Iossifidis D, Reyes DR, Manz A (2002b) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74:2637–2652

    Article  Google Scholar 

  • Chen DF, Li WH, Du H, Li M (2012) Continuous sorting of microparticles using dielectrophoresis. J Nanosci Nanotechnol 12:3035–3039

    Article  Google Scholar 

  • Destgeer G, Ha BH, Jung JH, Sung HJ (2014) Submicron separation of microspheres via travelling surface acoustic waves. Lab Chip 14:4665–4672. doi:10.1039/C4LC00868E

    Article  Google Scholar 

  • Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046. doi:10.1039/b912547g

    Article  Google Scholar 

  • Franke T, Abate AR, Weitz DA, Wixforth A (2009a) Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab Chip 9:2625–2627. doi:10.1039/b906819h

    Article  Google Scholar 

  • Franke T, Braunmüller S, Frommelt T, Wixforth A (2009b) Sorting of solid and soft objects in vortices driven by surface acoustic waves. SPIE Eur Microtechnol New Millenn 73650O:73650O. doi:10.1117/12.821701

    Article  Google Scholar 

  • Franke T, Braunmüller S, Schmid L et al (2010) Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10:789–794. doi:10.1039/b915522h

    Article  Google Scholar 

  • Geislinger TM, Eggart B, Braunmuller S, Schmid L, Franke T (2012) Separation of blood cells using hydrodynamic lift. Appl Phys Lett 4:183701

    Article  Google Scholar 

  • Hu X, Bessette PH, Qian J et al (2005) Marker-specific sorting of rare cells using dielectrophoresis. Proc Natl Acad Sci USA 102:15757–15761. doi:10.1073/pnas.0507719102

    Article  Google Scholar 

  • Kim U, Soh HT (2009) Simultaneous sorting of multiple bacterial targets using integrated dielectrophoretic-magnetic activated cell sorter. Lab Chip 9:2313–2318. doi:10.1039/b903950c

    Article  Google Scholar 

  • Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39:1203–1217. doi:10.1039/b915999c

    Article  Google Scholar 

  • Lenshof A, Magnusson C, Laurell T (2012) Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. Lab Chip 12:1210–1223. doi:10.1039/c2lc21256k

    Article  Google Scholar 

  • Lewpiriyawong N, Yang C, Lam YC (2010) Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Electrophoresis 31:2622–2631. doi:10.1002/elps.201000087

    Article  Google Scholar 

  • Li S, Ding X, Guo F et al (2013) An on-chip, multichannel droplet sorter using standing surface acoustic waves. Anal Chem 85:5468–5474. doi:10.1021/ac400548d

    Article  Google Scholar 

  • Marchington RF, Mazilu M, Kuriakose S et al (2008) Optical deflection and sorting of microparticles in a near-field optical geometry. Opt Express 16:3712–3726

    Article  Google Scholar 

  • McCloskey KE, Chalmers JJ, Zborowski M (2003) Magnetic cell separation: characterization of magnetophoretic mobility. Anal Chem 75:6868–6874. doi:10.1021/ac034315j

    Article  Google Scholar 

  • Nam J, Lim H, Kim D, Shin S (2011) Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab Chip 11:3361–3364. doi:10.1039/c1lc20346k

    Article  Google Scholar 

  • Nieuwenhuis JH, Jachimowicz A, Svasek P, Vellekoop MJ (2004) High-speed integrated particle sorters based on dielectrophoresis. Proc IEEE Sens 2004:64–67. doi:10.1109/ICSENS.2004.1426100

    Google Scholar 

  • Petersson F, Aberg L, Swärd-Nilsson A-M, Laurell T (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79:5117–5123. doi:10.1021/ac070444e

    Article  Google Scholar 

  • Rambach RW, Skowronek V, Franke T (2014) Localization and shaping of surface acoustic waves using PDMS posts: application for particle filtering and washing. RSC Adv 4:60534–60542. doi:10.1039/C4RA13002B

    Article  Google Scholar 

  • Schmid L, Weitz DA, Franke T (2014) Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14:3710–3718. doi:10.1039/C4LC00588K

    Article  Google Scholar 

  • Shi J, Mao X, Ahmed D et al (2008) Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip 8:221–223. doi:10.1039/b716321e

    Article  Google Scholar 

  • Shi J, Huang H, Stratton Z et al (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9:3354–3359. doi:10.1039/b915113c

    Article  Google Scholar 

  • Skowronek V, Rambach RW, Schmid L et al (2013) Particle deflection in a poly(dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence. Anal Chem 85:9955–9959. doi:10.1021/ac402607p

    Article  Google Scholar 

  • Van den Engh G (2002) High-Speed Cell Sorting. Emerg. Tools Single-Cell Anal. Wiley, New Jersey, pp 21–48

    Google Scholar 

  • Wang X, Zhou J, Papautsky I (2013) Inertial Microfluidic Band-Pass Separations, pp 575–577

  • Wiklund M, Günther C, Lemor R et al (2006) Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Lab Chip 6:1537–1544. doi:10.1039/b612064b

    Article  Google Scholar 

  • Xuan X, Zhu J, Church C (2010) Particle focusing in microfluidic devices. Microfluid Nanofluidics 9:1–16. doi:10.1007/s10404-010-0602-7

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Achim Wixforth for support and acknowledge support by the Center for NanoScience (CeNS). V. S. and R. R. thank Lothar Schmid and Thomas Geislinger for discussions. T. F. thanks the German Research Foundation (DFG) for financial support via priority programs and research grants. R. R. and T. F. acknowledge support by the “Bayerisches Staatsministerium für Umwelt und Verbraucherschutz”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Franke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skowronek, V., Rambach, R.W. & Franke, T. Surface acoustic wave controlled integrated band-pass filter. Microfluid Nanofluid 19, 335–341 (2015). https://doi.org/10.1007/s10404-015-1559-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1559-3

Keywords

Navigation