Skip to main content
Log in

Conveyance of helium–neon laser, polymer liquid and polystyrene (PS) beads through microoptofluidic channels of polydimethylsiloxane (PDMS)

  • Short communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this work, the simultaneous conveyance of light, liquid, and microbeads in microoptofluidic channels was investigated experimentally. Based on soft lithography, the microoptofluidic channels were made of transparent polydimethylsiloxane (PDMS) with length of ~3 cm, height of ~134 μm, width of ~210 μm, and refractive index of light (n) of 1.41–1.42. These channels were intended to have the different bent angles (θ b) from 15° to 90° and radii (R) of curvature from 0 to 10 mm, respectively. The colorless liquid polymer of Norland Optical Adhesive (NOA 89) was used as the core material of the channels. The NOA 89 had a higher n than that of PDMS to be capable of generating the total internal reflection of light with a collective angle (θ collect) 20°–21° and numerical aperture ~0.54. Using helium–neon (HeNe) red laser at a wavelength of 633 nm, the characterization of optical illumination showed that the optical losses of LCWs strongly depended on their bending degree with 0.056–0.060 dB/cm°. Finally, we demonstrated the motion of light delivered by microfluidic flows at an average speed of ~1 mm/s and the motion of 20-μm-diameter polystyrene beads at a flowing speed ~5 μm/s. The developed LCWs here may be further realized for a promising application on tracking and visualization of small objects such as cells within biological microsystems in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Beach JR, Shao L, Remmert K, Li D, Betzig E, Hammer JA III (2014) Nonmuscle myosin II isoforms coassemble in living cells. Curr Biol 24(10):1160–1166

    Article  Google Scholar 

  • Cai Z, Qiu W, Shao G, Wang W (2013) A new fabrication method for all-PDMS waveguides. Sens Actuators A Phys 204:44–47

    Article  Google Scholar 

  • Camou S, Fujita H, Fujii T (2003) PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip 3:40–45

    Article  Google Scholar 

  • Chen CT, Huang HP (2013) Formation, release and assembly of a non-evaporative photocurable liquid through micromolding and inkjet printing. J Micromech Microeng 23(9):095007

    Article  Google Scholar 

  • Chen J, Zhang Z, Li L, Chen BC, Revyakin A, Hajj B, Legant W, Dahan M, Lionnet T, Betzig E, Tjian R, Liu Z (2014) Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156(6):274–1285

    Article  Google Scholar 

  • Cho SH, Godin J, Lo YH (2009) Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels. IEEE Photon Technol Lett 21(15):1057–1059

    Article  Google Scholar 

  • Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS-PDMS bonding technique for microfluidic devices. J Micromech Microeng 18(6):067001

    Article  Google Scholar 

  • Fleger M, Neyer A (2006) PDMS microfluidic chip with integrated waveguides for optical detection. Microelectron Eng 83(4/9):1291–1293

    Article  Google Scholar 

  • Gao L, Shao L, Higgins CD, Poulton JS, Peifer M, Davidson MW, Wu X, Goldstein B, Betzig E (2012) Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell 151(6/7):1370–1385

    Article  Google Scholar 

  • Gopalakrishnan N, Sagar KS, Christiansen MB, Vigild ME, Ndoni S, Kristensen A (2010) UV patterned nanoporous solid–liquid core waveguides. Opt Express 18(12):12903–12908

    Article  Google Scholar 

  • Goyal IC, Gallawa RL, Ghatak AK (1990) Bent planar waveguides and whispering gallery modes: a new method of analysis. J Lightwave Technol 8(5):768–774

    Article  Google Scholar 

  • Huang GW, Chen CT (2012) Microfluidic chips for guiding lights through micro polymeric channels injected with photopolymer liquids. Micro Nano Lett 7(11):1080–1083

    Article  Google Scholar 

  • Jain A, Yang HJ, Erickson D (2012) Gel-based optical waveguides with live cell encapsulation and integrated microfluidics. Opt Lett 37(9):1472–1474

    Article  Google Scholar 

  • Jo BH, Lerberghe LV, Motsegood KM, Beebe D (2000) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromech Syst 9(1):76–81

    Article  Google Scholar 

  • Jonas A, Yalizay B, Akturk S, Kiraz A (2014) Free-standing optofluidic waveguides formed on patterned superhydrophobic surfaces. Appl Phys Lett 104(9):091123

    Article  Google Scholar 

  • Kee JS, Poenar DP, Neuzil P, Yobas L (2008) Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurement. Sens Actuators B Chem 134(2):532–538

    Article  Google Scholar 

  • Lee GB, Lin CH, Chang GL (2003) Micro flow cytometers with buried SU-8/SOG optical waveguides. Sens Actuators A Phys 103(1/2):165–170

    Article  Google Scholar 

  • Lim JM, Kim SH, Yang SM (2011) Liquid–liquid fluorescent waveguides using microfluidic-drifting-induced hydrodynamic focusing. Microfluid Nanofluid 10(1):211–217

    Article  Google Scholar 

  • Lin CH, Lee GB, Chen SH, Chang GL (2003) Micro capillary electrophoresis chips integrated with buried SU-8/SOG optical waveguides for bio-analytical applications. Sens Actuators A Phys 107(2):125–131

    Article  Google Scholar 

  • Liu KJ, Wang TH (2008) Cylindrical illumination confocal spectroscopy: rectifying the limitations of confocal molecule spectroscopy through one-dimensional beam shaping. Biophys J 95(6):2964

    Article  Google Scholar 

  • Manor R, Datta A, Ahmad I, Holtz M, Gangopadhyay S, Dallas T (2003) Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF. IEEE Sensors J 3(6):687–692

    Article  Google Scholar 

  • Mushfique H, Leach J, Leonardo RD, Padgett MJ, Cooper JM (2008) Optically driven pumps and flow sensors for microfluidic systems. Proc Inst Mech Eng C 222(5):829–837

    Article  Google Scholar 

  • Papakonstantinou I, Wang K, Selviah DR, Anibal Fernandez F (2007) Transition, radiation and propagation loss in polymer multimode waveguide bends. Opt Express 15(2):669–679

    Article  Google Scholar 

  • Petersson F, Nilsson A, Jonsson H, Laurell T (2005) Carrier medium exchange through ultrasonic particle switching in microfluidic channels. Anal Chem 77(5):1216–1221

    Article  Google Scholar 

  • Schmidt BS, Yang AHJ, Erickson D, Lipson M (2007) Optofluidic trapping and transport on solid core waveguides within a microfluidic device. Opt Express 15(22):14322–14334

    Article  Google Scholar 

  • Schueller OJA, Zhao XM, Whitesides GM, Smith SP, Prentiss M (1999) Fabrication of liquid-core waveguides by soft lithography. Adv Mater 11(1):37–41

    Article  Google Scholar 

  • Shamansky LM, Davis CB, Stuart JK, Kuhr WG (2001) Immobilization and detection of DNA on microfluidic chips. Talanta 55(5):909–918

    Article  Google Scholar 

  • Song WZ, Liu AQ, Liu CS, Yap PH (2007) A micro-opti-fluidic spectrometer with integrated 3D liquid–liquid waveguide. In: IEEE/LEOS international conference on optical MEMS and nanophotonics. Hualien, Taiwan, pp 161–162, 12–16 Aug 2007

  • Subramaniam V, De Brabander GN, Naghski DH, Boyd JT (1997) Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides. J Lightwave Technol 15(6):990–997

    Article  Google Scholar 

  • Tas NR, Haneveld J, Jansen HV, Elwenspoek M, van den Berg A (2004) Capillary filling speed of water in nanochannels. Appl Phys Lett 85(15):3274–3276

    Article  Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584

    Article  Google Scholar 

  • Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273–283

    Article  Google Scholar 

  • Wolf KB, Krotzsch G (1995) Geometry and dynamics in refracting systems. Eur J Phys 16(1):14–20

    Article  MathSciNet  Google Scholar 

  • Yang LJ, Yao TJ, Tai YC (2004) The marching velocity of the capillary meniscus in a microchannel. J Micromech Microeng 14:220–225

    Article  Google Scholar 

  • Yang Y, Shi YZ, Chin LK, Zhang JB, Tsai DP, Liu AQ (2013) Optofluidic nanoparticles sorting by hydrodynamic optical force in Transducers 2013. Barcelona, Spain, pp 2122–2125, 16–20 June 2013

Download references

Acknowledgments

The authors are grateful to the Research Center for MEMS and Precision Machines at the National Kaohsiung University of Applied Sciences (KUAS) for access to major fabrication equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Tai Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CT., Sun, WC. Conveyance of helium–neon laser, polymer liquid and polystyrene (PS) beads through microoptofluidic channels of polydimethylsiloxane (PDMS). Microfluid Nanofluid 19, 245–250 (2015). https://doi.org/10.1007/s10404-015-1549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1549-5

Keywords

Navigation