Skip to main content
Log in

Spatiotemporal fractionation of two DNA fragments by microfluidic devices

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Microfluidics exhibit great promise as an alternative to conventional polyacrylamide slab gels to improve separation performance and decrease cross-contamination in the fractionation of selected DNA fragments from a complex mixture. This article provides a method to enable the spatial and temporal fractionation of multiple DNA fragments. We incorporate ten parallel extraction channels to increase the sampling range to cover multiple DNA fragments. Two neighboring fragments of 36, and 39 bases were first separated and simultaneously collected within 8 min. The ten recovered fractions were then analyzed by polymerase chain reaction amplification and capillary electrophoresis analysis. Six recovered DNA samples from the ten channels exhibited purities greater than 90 %, and two exhibited purities higher than 99 %. In contrast to a single extraction channel, this method also provides a better technical solution to high-throughput problems perceived to be more fundamental.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker CA, Roper MG (2010) A continuous-flow, microfluidic fraction collection device. J Chromatogr A 1217:4743–4748

    Article  Google Scholar 

  • Eftenhauser CS, Manz A, Wldmer HM (1995) Manipulation of sample fractions on a capillary electrophoresis chip. Anal Chem 67:2284–2287

    Article  Google Scholar 

  • Footz T, Wunsam S, Kulak S, Crabtree HJ et al (2001) Sample purification on a microfluidic device. Electrophoresis 22:3868–3875

    Article  Google Scholar 

  • Fukumura R, Takahashi H, Saito T, Tsutsumi Y et al (2003) A sensitive transcriptome analysis method that can detect unknown transcripts. Nucleic Acids Res 31(16):e94. doi:10.1093/nar/gng094

    Article  Google Scholar 

  • Huang LR, Tegenfeldt JR, Kraeft JJ, Sturm JC, Austin RH, Cox EC (2002) A DNA prism for high-speed continuous fractionation of large DNA molecules. Nat Biotech 20:1048–1051

    Article  Google Scholar 

  • Irie T, Oshida T, Hasegawa H, Matsuoka Y et al (2000) Automated DNA fragment collection by capillary array gel electrophoresis in search of differentially expressed genes. Electrophoresis 21(2):367–374

    Article  Google Scholar 

  • Khandurina J, Chovan T, Guttman A (2002) Micropreparative fraction collection in microfluidic devices. Anal Chem 74:1737–1740

    Article  Google Scholar 

  • Kim SL, Tai TH (2013) Identification of SNPs in closely related temperate Japonica Rice cultivars using restriction enzyme-phased sequencing. PLoS One 8(3):e60176. doi:10.1371/journal.pone.0060176

    Article  Google Scholar 

  • Li ZY, Sun K, Sunayama M, Matsuo Y et al (2011) On-chip fraction collection for multiple selected ssDNA fragments using isolated extraction channels. J Chromatogr A 1218:997–1003

    Article  Google Scholar 

  • Lin RS, Burke DT, Burns MA (2003) Selective extraction of size-fractioned DNA samples in microfabricated electrophoresis devices. J Chromatogr A 1010:255–268

    Article  Google Scholar 

  • Lin RS, Burke DT, Burns MA (2005) Addressable electric fields for size-fractioned sample extraction in microfluidic devices. Anal Chem 77:4338–4347

    Article  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotech 26:1135–1145

    Article  Google Scholar 

  • Sinville R, Soper SA (2007) High resolution DNA separations using microchip electrophoresis. Sep Sci 30:1714–1728

    Article  Google Scholar 

  • Sun K, Li ZY, Ueno K, Juodkazis S et al (2007) Electrophoretic chip for high-fidelity fractionation of double-stranded DNA. Electrophoresis 28:1572–1578

    Article  Google Scholar 

  • Sun K, Suzuki N, Li ZY, Araki R, Ueno K, Juodkazis S et al (2009) High-fidelity fractionation of single-strand DNA fragments differing in size by one-base on spiral-channel electrophoretic chip. Electrophoresis 30:4277–4284

    Article  Google Scholar 

  • Tulock JJ, Shannon MA, Bohn PW, Sweedler JV (2004) Microfluidic separation and gateable fraction collection for mass-limited samples. Anal Chem 76:6419–6425

    Article  Google Scholar 

  • Wang Z, Taylor J, Jemere AB, Harrison DJ (2010) Microfluidic devices for electrokinetic sample fractionation. Electrophoresis 31:2575–2583

    Article  Google Scholar 

  • Zalewski DR, Gardeniers HJGE (2009) Continuous fractionation of a two-component mixture by zone electrophoresis. Electrophoresis 30:4187–4194

    Article  Google Scholar 

  • Zalewski DR, Schlautmann S, Schasfoort RBM, Gardeniers HJGE (2008) Electrokinetic sorting and collection of fractions for preparative capillary electrophoresis on a chip. Lab Chip 8:801–809

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Hokkaido University for chip fabrication. This work was supported by State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) (No. 2011TS02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Li, Z., You, S. et al. Spatiotemporal fractionation of two DNA fragments by microfluidic devices. Microfluid Nanofluid 19, 291–298 (2015). https://doi.org/10.1007/s10404-014-1523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1523-7

Keywords

Navigation