Skip to main content
Log in

Removal of excess interfacial material from surface-modified emulsions using a microfluidic device with triangular post geometry

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We report on a microfluidic device used to create water-in-oil and oil-in-water emulsions with controlled interfacial properties in pure solvent. Functional particles, specifically lipids, surfactants, and magnetic particulates, are delivered to the emulsion surface where they assemble to form a monolayer. This is achieved by immersing the emulsions in a high concentration of the functional particles and then separating excess material from the surrounding continuous phase. Separation is achieved using only passive hydrodynamic forces. It is desirable to remove the excess material so it is neither wasted nor available to interfere with applications where the surface-modified emulsions alone are needed. The separation of the surface-modified emulsions from the excess material is achieved by a variation of pinched flow fractionation. The emulsions are forced across streamlines into a pure solvent stream, while the smaller functional particles track a single streamline into a waste port. Numerical modeling confirms the validity of this streamline rationale for separation. The emulsions built using the microfluidic device support applications in drug delivery and membrane biology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow-focusing” in microchannels. Appl Phys Lett 82(3):364–366. doi:10.1063/1.1537519

    Article  Google Scholar 

  • Binks BP, Lumsdon SO (1999) Stability of oil-in-water emulsions stabilised by silica particles. Phys Chem Chem Phys 1(12):3007–3016. doi:10.1039/a902209k

    Article  Google Scholar 

  • Burgess A, Vigneron S, Brioudes E, Labbe JC, Lorca T, Castro A (2010) Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci 107(28):12564–12569. doi:10.1073/pnas.0914191107

    Article  Google Scholar 

  • Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40(19):R319–R336. doi:10.1088/0022-3727/40/19/r01

    Article  Google Scholar 

  • Corchero JL, Villaverde A (2009) Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol 27(8):468–476. doi:10.1016/j.tibtech.2009.04.003

    Article  Google Scholar 

  • Cupelli C, Borchardt T, Steiner T, Paust N, Zengerle R, Santer M (2013) Leukocyte enrichment based on a modified pinched flow fractionation approach. Microfluid Nanofluid 14(3–4):551–563. doi:10.1007/s10404-012-1073-9

    Article  Google Scholar 

  • Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Sturm JC, Austin RH (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci 103(40):14779–14784. doi:10.1073/pnas.0605967103

    Article  Google Scholar 

  • Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298(5595):1006–1009. doi:10.1126/science.1074868

    Article  Google Scholar 

  • Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218. doi:10.1038/nrd1985

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal Chem 70(23):4974–4984. doi:10.1021/ac980656z

    Article  Google Scholar 

  • Duncanson WJ, Lin T, Abate AR, Seiffert S, Shah RK, Weitz DA (2012) Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip 12(12):2135–2145. doi:10.1039/C2LC21164E

    Article  Google Scholar 

  • Frelichowska J, Bolzinger MA, Valour JP, Mouaziz H, Pelletier J, Chevalier Y (2009) Pickering w/o emulsions: drug release and topical delivery. Int J Pharm 368(1):7–15. doi:10.1016/j.ijpharm.2008.09.057

    Article  Google Scholar 

  • Garstecki P, Stone HA, Whitesides GM (2005) Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys Rev Lett 94(16):164501. doi:10.1103/PhysRevLett.94.164501

    Article  Google Scholar 

  • Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1(1):22–40. doi:10.1007/s10404-004-0010-y

    Google Scholar 

  • Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 9:941–949. doi:10.1039/b514130c

    Article  Google Scholar 

  • Gunther A, Jensen KF (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6(12):1487–1503. doi:10.1039/b609851g

    Article  Google Scholar 

  • Gunther A, Khan SA, Thalmann M, Trachsel F, Jensen KF (2004) Transport and reaction in microscale segmented gas–liquid flow. Lab Chip 4(4):278–286. doi:10.1039/b403982c

    Article  Google Scholar 

  • Jain A, Posner JD (2008) Particle dispersion and separation resolution of pinched flow fractionation. Anal Chem 80(5):1641–1648. doi:10.1021/ac0713813

    Article  Google Scholar 

  • Kantak C, Yobas L, Bansal T, Trau D (2010) A ‘microfluidic pinball’ for continuous generation of Layer-by-Layer polyelectrolyte microcapsules. Proceedings of μTAS 2010, 14th International Conference on Miniaturized Systems in Chemistry and Life Sciences, 3–7 Oct 2010, Groningen, The Netherlands, pp. 1091–1093

  • Kantak C, Beyer S, Yobas L, Bansal T, Trau D (2011) A ‘microfluidic pinball’ for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules. Lab Chip 11(6):1030–1035. doi:10.1039/C0LC00381F

    Article  Google Scholar 

  • Kozlov M, Quarmyne M, Chen W, McCarthy TJ (2003) Adsorption of poly (vinyl alcohol) onto hydrophobic substrates. A general approach for hydrophilizing and chemically activating surfaces. Macromolecules 36(16):6054–6059. doi:10.1021/ma021681g

    Article  Google Scholar 

  • Lan W, Li S, Xu J, Luo G (2011) Controllable preparation of nanoparticle-coated chitosan microspheres in a co-axial microfluidic device. Lab Chip 11(4):652–657. doi:10.1039/c0lc00463d

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. doi:10.1021/cr068445e

    Article  Google Scholar 

  • Leal-Calderon F, Schmitt V (2008) Solid-stabilized emulsions. Curr Opin Colloid Interface Sci 13(4):217–227. doi:10.1016/j.cocis.2007.09.005

    Article  Google Scholar 

  • Lee D, Weitz DA (2008) Double emulsion-templated nanoparticle colloidosomes with selective permeability. Adv Mater 20(18):3498–3503. doi:10.1002/adma.200800918

    Article  Google Scholar 

  • Lee D, Weitz DA (2009) Nonspherical colloidosomes with multiple compartments from double emulsions. Small 5(17):1932–1935. doi:10.1002/smll.200900357

    Article  Google Scholar 

  • Lee MH, Prasad V, Lee D (2010) Microfluidic fabrication of stable nanoparticle-shelled bubbles. Langmuir 26(4):2227–2230. doi:10.1021/la904425v

    Article  Google Scholar 

  • Matosevic S, Paegel BM (2011) Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line. J Am Chem Soc 133(9):2798–2800. doi:10.1021/ja109137s

    Article  Google Scholar 

  • Matosevic S, Paegel BM (2013) Layer-by-layer cell membrane assembly. Nat Chem 5(11):958–963. doi:10.1038/nchem.1765

    Article  Google Scholar 

  • Melle S, Lask M, Fuller GG (2005) Pickering emulsions with controllable stability. Langmuir 21(6):2158–2162. doi:10.1021/la047691n

    Article  Google Scholar 

  • Nie Z, Park JI, Li W, Bon SAF, Kumacheva E (2008) An “inside-out” microfluidic approach to monodisperse emulsions stabilized by solid particles. J Am Chem Soc 130(49):16508–16509. doi:10.1021/ja807764m

    Article  Google Scholar 

  • Ouyang Y, Mansell RS, Rhue RD (1995) Emulsion-mediated transport of nonaqueous-phase liquid in porous media: a review. Crit Rev Env Sci Tec 25(3):269–290. doi:10.1080/10643389509388480

    Article  Google Scholar 

  • Pautot S, Frisken BJ, Weitz DA (2003) Engineering asymmetric vesicles. Proc Natl Acad Sci USA 100(19):10718–10721. doi:10.1073/pnas.1931005100

    Article  Google Scholar 

  • Peng KQ, Ong WL, Yobas L, Trau D (2007) Continuous-flow layer-by-layer encapsulation with polyelectrolytes through a microfluidic device. Proceedings of µTAS 2007, 11th International Conference on Miniaturized Systems in Chemistry and Life Sciences, 7–11 Oct 2007, Paris, France, Vol. 2, pp. 1528–1530

  • Pickering SU (1907) Cxcvi—emulsions. J Chem Soc 91:2001–2021

    Article  Google Scholar 

  • Pieranski P (1980) Two-dimensional interfacial colloidal crystals. Phys Rev Lett 45(7):569–572. doi:10.1103/PhysRevLett.45.569

    Article  Google Scholar 

  • Rossier-Miranda FJ, Schroen CGPH, Boom RM (2009) Colloidosomes: versatile microcapsules in perspective. Colloid Surface A 343(1–3):43–49. doi:10.1016/j.colsurfa.2009.01.027

    Article  Google Scholar 

  • Sajeesh P, Sen AK (2013) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid. doi:10.1007/s10404-013-1291-9

    Google Scholar 

  • Sander JS, Studart AR (2011) Monodisperse functional colloidosomes with tailored nanoparticle shells. Langmuir 27(7):3301–3307. doi:10.1021/la1035344

    Article  Google Scholar 

  • Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Chu LY, Kim JW, Fernandez-Nieves A, Martinez CJ, Weitz DA (2008) Designer emulsions using microfluidics. Mater Today 11(4):18–27. doi:10.1016/S1369-7021(08)70053-1

    Article  Google Scholar 

  • Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5(7):778–784. doi:10.1039/b501885d

    Article  Google Scholar 

  • Tan YC, Cristini V, Lee AP (2006) Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens Actuators B 114(1):350–356. doi:10.1016/j.snb.2005.06.008

    Article  Google Scholar 

  • Teh SY, Khnouf R, Fan H, Lee AP (2011) Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics. Biomicrofluidics 5(4):0441130. doi:10.1063/1.3665221

    Article  Google Scholar 

  • Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541. doi:10.1126/science.1109164

    Article  Google Scholar 

  • Velev OD, Furusawa K, Nagayama K (1996) Assembly of latex particles by using emulsion droplets as templates. 1. microstructured hollow spheres. Langmuir 12(10):2374–2384. doi:10.1021/la9506786

    Article  Google Scholar 

  • Vladisavljevic GT, Kobayashi I, Nakajima M (2012) Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid Nanofluid 13(1):151–178. doi:10.1007/s10404-012-0948-0

    Article  Google Scholar 

  • Widder KJ, Senyei AE, Scarpelli DG (1978) Magnetic microspheres: a model system for site specific drug delivery in vivo. Exp Biol Med 158(2):141–146. doi:10.3181/00379727-158-40158

    Article  Google Scholar 

  • Xu QY, Nakajima M, Binks BP (2005) Preparation of particle-stabilized oil-in-water emulsions with the microchannel emulsification method. Colloids Surf A 262(1):94–100. doi:10.1016/j.colsurfa.2005.04.019

    Article  Google Scholar 

  • Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76(18):5465–5471. doi:10.1021/ac049863r

    Article  Google Scholar 

  • Zhang K, Wu W, Guo K, Chen JF, Zhang PY (2009) Magnetic polymer enhanced hybrid capsules prepared from a novel Pickering emulsion polymerization and their application in controlled drug release. Colloids Surf A 349(1):110–116. doi:10.1016/j.colsurfa.2009.08.005

    Google Scholar 

  • Zhou J, Qiao X, Binks BP, Sun K, Bai M, Li Y, Liu Y (2011) Magnetic Pickering emulsions stabilized by Fe3O4 nanoparticles. Langmuir 27(7):3308–3316. doi:10.1021/la1036844

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation (DBI Award #1429448) and a State University of New York at Binghamton Transdisciplinary Area of Excellence Grant (Health Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Chiarot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Irwin, R.M., Coloma, M.A. et al. Removal of excess interfacial material from surface-modified emulsions using a microfluidic device with triangular post geometry. Microfluid Nanofluid 18, 1233–1246 (2015). https://doi.org/10.1007/s10404-014-1521-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1521-9

Keywords

Navigation