Skip to main content

Electrokinetically driven deterministic lateral displacement for particle separation in microfluidic devices

Abstract

An electrokinetically driven deterministic lateral displacement device is proposed for the continuous, two-dimensional fractionation of suspensions in microfluidic platforms. The suspended species are driven through an array of regularly spaced cylindrical posts by applying an electric field across the device. We explore the entire range of orientations of the driving field with respect to the array of obstacles and show that, at specific forcing angles, particles of different size migrate in different directions, thus enabling continuous, two-dimensional separation. We discuss a number of features observed in the motion of the particles, including directional locking and sharp transitions between migration angles upon variations in the direction of the force, that are advantageous for high-resolution two-dimensional separation. A simple model based on individual particle–obstacle interactions accurately describes the migration angle of the particles depending on the orientation of the driving field and can be used to reconfigure the electric field depending on the composition of the samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Al-Fandi M, Al-Rousan M, Jaradat MAK, Al-Ebbini L (2011) New design for the separation of microorganisms using microfluidic deterministic lateral displacement. Robot Comput Integr Manuf 27:237–244

    Article  Google Scholar 

  2. Balvin M, Sohn E, Iracki T, Drazer G, Frechette J (2009) Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Phys Rev Lett 103:078301

    Article  Google Scholar 

  3. Beech JP, Tegenfeldt JO (2008) Tuneable separation in elastomeric microfluidics devices. Lab Chip 8:657–659

    Article  Google Scholar 

  4. Beech JP, Jonsson P, Tegenfeldt JO (2009) Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip 9:2698–2706

    Article  Google Scholar 

  5. Bowman T, Frechette J, Drazer G (2012) Force driven separation of drops by deterministic lateral displacement. Lab Chip 12:2903

    Article  Google Scholar 

  6. Bowman TJ, Drazer G, Frechette J (2013) Inertia and scaling in deterministic lateral displacement. Biomicrofluidics 7:064111

    Article  Google Scholar 

  7. Chang S, Cho Y-H (2008) A continuous size-dependent particle separator using a negative dielectrophoretic virtual pillar array. Lab Chip 8:1930–1936

    Article  Google Scholar 

  8. Cummings EB (2003) Streaming dielectrophoresis for continuous-flow microfluidic devices. IEEE Eng Med Biol Mag 22:75–84

    Article  Google Scholar 

  9. Cummings EB, Singh AK (2003) Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal Chem 75:4724–4731

    Article  Google Scholar 

  10. Davis JA et al (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci 103:14779–14784

    Article  Google Scholar 

  11. Devendra R, Drazer G (2012) Gravity driven deterministic lateral displacement for particle separation in microfluidic devices. Anal Chem 84:10621–10627

    Article  Google Scholar 

  12. Devendra R, Drazer G (2014) Deterministic fractionation of binary suspensions moving past a line of microposts. Microfluid Nanofluidics 17:519–526

    Article  Google Scholar 

  13. Frechette J, Drazer G (2009) Directional locking and deterministic separation in periodic arrays. J Fluid Mech 627:379–401

    Article  MATH  Google Scholar 

  14. Green JV, Radisic M, Murthy SK (2009) Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal Chem 81:9178–9182

    Article  Google Scholar 

  15. Herrmann J, Karweit M, Drazer G (2009) Separation of suspended particles in microfluidic systems by directional locking in periodic fields. Phys Rev E 79:061404

    Article  Google Scholar 

  16. Holm SH, Beech JP, Barrett MP, Tegenfeldt JO (2011) Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11:1326–1332

    Article  Google Scholar 

  17. Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990

    Article  Google Scholar 

  18. Huang R et al (2008) A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenat Diagn 28:892–899

    Article  Google Scholar 

  19. Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic Press, New York

    Google Scholar 

  20. Inglis DW, Davis JA, Austin RH, Sturm JC (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:655–658

    Article  Google Scholar 

  21. Inglis DW, Lord M, Nordon RE (2011) Scaling deterministic lateral displacement arrays for high throughput and dilution-free enrichment of leukocytes. J Micromech Microeng 21:054024

    Article  Google Scholar 

  22. Joensson HN, Uhlén M, Svahn HA (2011) Droplet size based separation by deterministic lateral displacement—separating droplets by cell-induced shrinking. Lab Chip 11:1305–1310

    Article  Google Scholar 

  23. Li N, Kamei DT, Ho C-M (2007) On-chip continuous blood cell subtype separation by deterministic lateral displacement. In: 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2007. NEMS’07 (IEEE), pp 932–936. doi:10.1109/NEMS.2007.352171

  24. Loutherback K et al (2010) Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid Nanofluidics 9:1143–1149

    Article  Google Scholar 

  25. Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley, Hoboken

    Book  Google Scholar 

  26. Morton KJ et al (2008a) Crossing microfluidic streamlines to lyse, label and wash cells. Lab Chip 8:1448–1453

    Article  Google Scholar 

  27. Morton K et al (2008b) Hydrodynamic metamaterials: microfabricated arrays to steer, refract, and focus streams of biomaterials. Proc Natl Acad Sci USA 105:7434–7438

    Article  Google Scholar 

  28. Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659

    Article  Google Scholar 

  29. Paul PH, Garguilo MG, Rakestraw DJ (1998) Imaging of pressure- and electrokinetically driven flows through open capillaries. Anal Chem 70:2459–2467

    Article  Google Scholar 

  30. Risbud SR, Drazer G (2013) Trajectory and distribution of suspended non-Brownian particles moving past a fixed spherical or cylindrical obstacle. J Fluid Mech 714:213–237

    Article  MATH  MathSciNet  Google Scholar 

  31. Sureda M, Miller A, Diez FJ (2012) In situ particle zeta potential evaluation in electroosmotic flows from time-resolved microPIV measurements. Electrophoresis 33:2759–2768

    Article  Google Scholar 

  32. Xuan J, Lee ML (2013) Size separation of biomolecules and bioparticles using micro/nanofabricated structures. Anal Methods 6:27–37

    Article  Google Scholar 

  33. Yan D, Yang C, Nguyen N-T, Huang X (2006) Electrokinetic flow in microchannels with finite reservoir size effects. J Phys Conf Ser 34:385–392

    Article  Google Scholar 

  34. Zeming KK, Ranjan S, Zhang Y (2013) Rotational separation of non-spherical bioparticles using I-shaped pillar arrays in a microfluidic device. Nat Commun 4:1625

    Article  Google Scholar 

  35. Zhang B, Green JV, Murthy SK, Radisic M (2012) Label-free enrichment of functional cardiomyocytes using microfluidic deterministic lateral flow displacement. PLoS One 7:e37619

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Science Foundation Grant No. CBET-1343924. We acknowledge partial support from Office of Naval Research Award No.: N000141110019.

Author information

Affiliations

Authors

Corresponding author

Correspondence to German Drazer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanasoge, S., Devendra, R., Diez, F.J. et al. Electrokinetically driven deterministic lateral displacement for particle separation in microfluidic devices. Microfluid Nanofluid 18, 1195–1200 (2015). https://doi.org/10.1007/s10404-014-1514-8

Download citation

Keywords

  • PDMS
  • Microfluidic Device
  • Critical Angle
  • Driving Field
  • PDMS Microchannel