Advertisement

Microfluidics and Nanofluidics

, Volume 18, Issue 5–6, pp 1007–1021 | Cite as

Dynamics of viscoelastic fluid droplet under very low interfacial tension in a serpentine T-junction microchannel

  • Xiao-Bin Li
  • Feng-Chen Li
  • Haruyuki Kinoshita
  • Masamichi Oishi
  • Marie Oshima
Research Paper

Abstract

Droplets of viscoelastic fluid were generated in silicone oil using a microfluidic T-junction device, and their intrinsic dynamics were studied. The viscoelastic fluid used was a dilute aqueous solution of cetyltrimethylammonium chloride (CTAC) with sodium salicylate (NaSal) at the same mass concentration as CTAC. The surfactant greatly lowered the interfacial tension between the silicone oil and surfactant-laden droplet and also introduced elasticity to the aqueous solution. The generated droplets experienced extension–shearing mixed kinematics as they moved along the confined microchannel, showing distinct morphological evolvement compared with those of Newtonian fluids and polymeric solutions under normal magnitudes of interfacial tension. With surfactant additives in the dispersed phase, the droplet tail streaming was composed of tiny satellites at the rear (upstream) of the droplet. The emergence of tails depended on the physical properties, such as the flow rate ratio, of the two fluids. This phenomenon indicates a new regime for the deformation of soluble-surfactant-laden droplets governed sequentially by three different processes of dynamic shearing, elongation and interfacial instability.

Keywords

Droplet Multiphase flow Viscoelasticity Surfactant Low interfacial tension Tail fragmentation 

Notes

Acknowledgments

This work is sponsored by the National Natural Science Foundation of China (51276046), Foundation for Innovative Research Groups of the National Natural Science Foundation of China (51121004), Specialized Research Fund for the Doctoral Program of Higher Education of China (20112302110020), China Postdoctoral Science Foundation (2013M541374) and Heilongjiang Postdoctoral Fund (LBH-Z12110) of China. We are very grateful to the anonymous reviewers and the editor for their valuable comments and encouragement.

References

  1. Afkhami S, Leshansky AM, Renardy Y (2011) Numerical investigation of elongated drops in a microfluidic T-junction. Phys Fluids 23:022002CrossRefGoogle Scholar
  2. Ahn K, Agresti J, Chong H, Marquez M, Weitz DA (2006) Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl Phys Lett 88:264105CrossRefGoogle Scholar
  3. Anna SL, Mayer HC (2006) Microscale tipstreaming in a microfluidic flow focusing device. Phys Fluids 18(12):121512CrossRefGoogle Scholar
  4. Arratia PE, Gollub JP, Durian DJ (2007) Polymer drop breakup in microchannels. Chaos 17(4):041102CrossRefGoogle Scholar
  5. Atkin R, Craig VSJ, Biggs S (2001) Adsorption kinetics and structural arrangements of cetylpyridinium bromide at the silica-aqueous interface. Langmuir 17(20):6155–6163CrossRefGoogle Scholar
  6. Atkin R, Craig VSJ, Wanless EJ, Biggs S (2003) The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface. J Colloid Interface Sci 266(2):236–244CrossRefGoogle Scholar
  7. Baret JC (2012) Surfactants in droplet-based microfluidics. Lab Chip 12(3):422–433CrossRefGoogle Scholar
  8. Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10(16):2032–2045CrossRefGoogle Scholar
  9. Beer NR, Rose KA, Kennedy IM (2009) Observed velocity fluctuations in monodisperse droplet generators. Lab Chip 9(6):838–840CrossRefGoogle Scholar
  10. Bhat PP, Pasquali M, Basaran OA (2009) Beads-on-string formation during filament pinch-off: dynamics with the PTT model for non-affine motion. J NonNewton Fluid Mech 159(1–3):64–71CrossRefzbMATHGoogle Scholar
  11. Bringer MR, Gerdts CJ, Song H, Tice JD, Ismagilov RF (2004) Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Philos Trans A Math Phys Eng Sci 362(1818):1087–1104CrossRefGoogle Scholar
  12. Carrier O, Dervin E, Funfschilling D, Li H-Z (2013) Formation of satellite droplets in flow-focusing junctions: volume and neck rupture. Microsyst Technol. doi: 10.1007/s00542-013-1905-x Google Scholar
  13. Carrier O, Funfschilling D, Li H-Z (2014) Effect of the fluid injection configuration on droplet size in a microfluidic T junction. Phys Rev E 89(1):013003CrossRefGoogle Scholar
  14. Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40(19):R319–R336CrossRefGoogle Scholar
  15. Christopher GF, Noharuddin NN, Taylor JA, Anna SL (2008) Experimental observation of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys Rev E 78(3):036317CrossRefGoogle Scholar
  16. Clasen C, Eggers J, Fontelos MA, Li J, McKinley GH (2006) The beads-on-string structure of viscoelastic threads. J Fluid Mech 556:283–308CrossRefzbMATHGoogle Scholar
  17. De Bruijn RA (1993) Tipstreaming of drops in simple shear flows. Chem Eng Sci 48(2):277–284CrossRefGoogle Scholar
  18. De Menech M, Garstecki P, Jousse F, Stone HA (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595:141–161CrossRefzbMATHGoogle Scholar
  19. Dendukuri D, Tsoi K, Hatton TA, Doyle PS (2005) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21(6):2113–2116CrossRefGoogle Scholar
  20. Fischer P, Erni P (2007) Emulsion drops in external flow fields—the role of liquid interfaces. Curr Opin Colloid Interface Sci 12(4–5):196–205CrossRefGoogle Scholar
  21. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of breakup. Lab Chip 6(3):437–446CrossRefGoogle Scholar
  22. Glawdel T, Ren CL (2012) Droplet formation in microfluidic T-junction generators operating in the transitional regime. III. Dynamic surfactant effects. Phys Rev E 86(2):026308CrossRefGoogle Scholar
  23. Glawdel T, Elbuken C, Ren CL (2012a) Droplet formation in microfluidic T-junction generators operating in the transitional regime I. Experimental observations. Phys Rev E 85(1):016322CrossRefGoogle Scholar
  24. Glawdel T, Elbuken C, Ren CL (2012b) Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling. Phys Rev E 85(1):016323CrossRefGoogle Scholar
  25. Günther A, Jhunjhunwala M, Thalmann M, Schmidt MA, Jensen KF (2005) Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir 21:1547–1555CrossRefGoogle Scholar
  26. Gupta A, Kumar R (2010a) Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluid Nanofluid 8(6):799–812CrossRefGoogle Scholar
  27. Gupta A, Kumar R (2010b) Flow regime transition at high capillary numbers in a microfluidic T-junction: viscosity contrast and geometry effect. Phys Fluids 22(12):122001CrossRefGoogle Scholar
  28. Hashimoto M, Garstecki P, Stone HA, Whitesides GM (2008) Interfacial instabilities in a microfluidic Hele-Shaw cell. Soft Matter 4:1403–1413CrossRefGoogle Scholar
  29. Hong JW, Hosokawa K, Fujii T, Seki M, Endo I (2001) Microfabricated polymer chip for capillary gel electrophoresis. Biotech Prog 17(5):958–962CrossRefGoogle Scholar
  30. Humphry KJ, Ajdari A, Fernández-Nieves A, Stone HA, Weitz DA (2009) Suppression of instabilities in multiphase flow by geometric confinement. Phys Rev E 79(5):056310CrossRefGoogle Scholar
  31. Husny J, Cooper-White JJ (2006) The effect of elasticity on drop creation in T-shaped microchannels. J NonNewton Fluid Mech 137(1–3):121–136CrossRefGoogle Scholar
  32. Jin B-J, Kim YW, Lee Y, Yoo JY (2010) Droplet merging in a straight microchannel using droplet size or viscosity difference. J Micromech Microeng 20:035003CrossRefGoogle Scholar
  33. Lac E, Sherwood JD (2009) Motion of a drop along the centerline of a capillary in a pressure-driven flow. J Fluid Mech 640:27–54CrossRefzbMATHMathSciNetGoogle Scholar
  34. Li X-B, Li F-C, Yang J-C, Kinoshita H, Oishi M, Oshima M (2012) Study on the mechanism of droplet formation in T-junction microchannel. Chem Eng Sci 69(1):340–351CrossRefGoogle Scholar
  35. Lin Z, Cai JJ, Scriven LE, Davis HT (1994) Spherical-to-Wormlike Micelle transition in CTAB solutions. J Phys Chem 98(23):5984–5993CrossRefGoogle Scholar
  36. Lindner A, Wagner C (2009) Viscoelastic surface instabilities. C R Phys 10(8):712–727CrossRefGoogle Scholar
  37. Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92(5):054503CrossRefGoogle Scholar
  38. Migler KB (2001) String formation in sheared polymer blends: coalescence, breakup, and finite size effects. Phys Rev Lett 86(6):1023–1026CrossRefGoogle Scholar
  39. Mulligan MK, Rothstein JP (2011a) The effect of confinement-induced shear on drop deformation and breakup in microfluidic extensional flows. Phys Fluids 23(2):022004CrossRefGoogle Scholar
  40. Mulligan MK, Rothstein JP (2011b) Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows. Langmuir 27(16):9760–9768CrossRefGoogle Scholar
  41. Myska J, Lin Z, Stepanek P, Zakin JL (2001) Influence of salts on dynamic properties of drag reducing surfactants. J NonNewton Fluid Mech 97(2–3):251–266CrossRefzbMATHGoogle Scholar
  42. Oishi M, Kinoshita H, Fujii T, Oshima M (2011) Simultaneous measurement of internal and surrounding flows of a moving droplet using multicolour confocal micro-particle image velocimetry (micro-PIV). Meas Sci Technol 22:105401CrossRefGoogle Scholar
  43. Paria S, Khilar KC (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. Adv Colloid Interface Sci 110(3):75–95CrossRefGoogle Scholar
  44. Qiu D, Silva L, Tonkovich AL, Arora A (2010) Micro-droplet formation in non-Newtonian fluid in a microchannel. Microfluid Nanofluid 8(4):531–548CrossRefGoogle Scholar
  45. Sostarecz MC, Belmonte A (2004) Beads-on-string phenomena in wormlike micellar fluids. Phys Fluids 16(9):L67–L70CrossRefGoogle Scholar
  46. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026CrossRefGoogle Scholar
  47. Tan Y-C, Fisher JS, Lee AI, Cristini V, Phillip A (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4(4):292–298CrossRefGoogle Scholar
  48. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220CrossRefGoogle Scholar
  49. Thorsen T, Roberts RW, Arnold FA, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166CrossRefGoogle Scholar
  50. Van steijn V, Kreutzer MT, Kleijn CR (2007) μ-PIV study of the formation of segmented flow in microfluidic T-junctions. Chem Eng Sci 62(24):7505–7514    CrossRefGoogle Scholar
  51. Van Steijn V, Kreutzer MT, Kleijn CR (2008) Velocity fluctuations of segmented flow in microchannels. Chem Eng J 135S:S159–S165Google Scholar
  52. Van Steijn V, Kleijn CR, Kreutzer MT (2010) Predictive model for the size of bubbles and droplets created in microfluidic T-junctions. Lab Chip 10:2513–2518CrossRefGoogle Scholar
  53. Vonnegut B (1942) Rotating bubble method for the determination of surface and interfacial tensions. Rev Sci Instrum 13(1):6–9CrossRefGoogle Scholar
  54. Wagner C, Amarouchene Y, Bonn D, Eggers J (2005) Droplet detachment and satellite bead formation in viscoelastic fluids. Phys Rev Lett 95:164504CrossRefGoogle Scholar
  55. Wang K, Lu YC, Xu JH, Luo GS (2009) Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process. Langmuir 25(4):2153–2158CrossRefGoogle Scholar
  56. Wehking JD, Gabany M, Chew L, Kumar R (2014) Effects of viscosity, interfacial tension, and flow geometry on droplet formation in a microfluidic T-junction. Microfluid Nanofluid 16:441–453CrossRefGoogle Scholar
  57. Wei JJ, Li F-C, Yu B, Kawaguchi Y (2006a) Swirling flow of a viscoelastic fluid with free surface Part I: experimental analysis of vortex motion by PIV. J Fluids Eng 128(1):69–76CrossRefGoogle Scholar
  58. Wei JJ, Kawaguchi Y, Yu B, Feng ZP (2006b) Rheological characteristics and turbulent friction drag and heat transfer reductions of a very dilute cationic surfactant solution. J Heat Trans 128(10):977–983CrossRefGoogle Scholar
  59. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373CrossRefGoogle Scholar
  60. Xu N, Wei JJ (2014) Time-dependent shear-induced nonlinear viscosity effects in dilute CTAC/NaSal Solutions: mechanism analyses. Adv Mech Eng 179394:1–8CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xiao-Bin Li
    • 1
    • 2
    • 3
  • Feng-Chen Li
    • 1
  • Haruyuki Kinoshita
    • 3
  • Masamichi Oishi
    • 3
  • Marie Oshima
    • 3
  1. 1.School of Energy Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.School of Mechatronics EngineeringHarbin Institute of TechnologyHarbinChina
  3. 3.Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations