Skip to main content
Log in

A novel, compact and efficient microchannel arrangement with multiple hydrodynamic effects for blood plasma separation

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Separating plasma from blood using a microfluidic platform is favored and beneficial in point-of-care diagnostics. This paper presents a microdevice enabling blood plasma separation. In the present work, the microfluidic channel was innovatively designed in such a way that a combination of effects such as Fahraeus effect, bifurcation law, cell-free region, centrifugal action, and constriction–expansion is utilized together for skimming plasma from human blood. Microdevices were designed and fabricated using PDMS (poly-di-methyl siloxane), which is a bio-compatible material. The results obtained are extremely encouraging in terms of separation efficiency. Separation efficiency of almost 100 % has been achieved at moderate hematocrit contents of around 20 %. The separation efficiency for undiluted blood (hematocrit of 45 %) is around 80 %. This microdevice is free from clogging issues that are usually encountered in blood plasma separation devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barbee JH, Cokelet GR (1971) The Fahraeus effect. Microvasc Res 3:6–16

    Article  Google Scholar 

  • Blankenstein G, Larsen UD (1998) Modular concept of a laboratory on a chip for chemical and biochemical analysis. Biosens Bioelectron 13:427–438

    Article  Google Scholar 

  • Blattert C, Jurischka R, Tahhan I, Schoth A, Kerth P, Menz W (2004) Separation of blood in microchannel bends. Conf Proc IEEE Eng Med Biol Soc 4:2627–2630

    Google Scholar 

  • Chen X, Cui DF, Lui CC, Li H, Chen J (2007) Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Anal Chem 584:237–243

    Google Scholar 

  • Cokelet GR, Goldsmith HL (1991) Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Circ Res 68:1–17

    Article  Google Scholar 

  • Fahraeus R (1929) The suspension stability of the blood. Physiol Rev 9(2):241–274

    Google Scholar 

  • Fahraeus R, Lindqvist T (1931) The viscosity of the blood in narrow capillary tubes. Am J Physiol 96:562–568

    Google Scholar 

  • Faivre M, Abkarial M (2006) Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. J Biorheol 43:147–159

    Google Scholar 

  • Fenton BM, Carr RT, Cokelet GR (1985) Nonuniform red cell distribution in 20 to 100 μm bifurcations. Microvasc Res 29:103–126

    Article  Google Scholar 

  • Fung YC (1973) Stochastic flow in capillary blood vessels. Microvasc Res 5:34–48

    Article  Google Scholar 

  • Fung YC (1981) Biomechanics—mechanical properties of living tissues. Springer, New York

    Google Scholar 

  • Goldsmith L, Marlow JC (1979) Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells. J Colloid Interface Sci 71:383–407

    Article  Google Scholar 

  • Hong JW, Quake SR (2003) Integrated nanoliter systems. Nat Biotechnol 21:1179–1183

    Article  Google Scholar 

  • Huh D, Bahng JH, Ling YB, Wei HH, Kripfgans OD, Fowlkes JB, Grotberg JB, Takayama S (2007) Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal Chem 79:1369–1376

    Article  Google Scholar 

  • Inglis DW, Davis JA, Austin RH, Sturm JC (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:655–658

    Article  Google Scholar 

  • Jaggi RD, Sandoz R, Effenhauser CS (2007) Microfluidic depletion of red blood cells from whole blood in high-aspect-ratio microchannels. Microfluid Nanofluid 3:47–53

    Article  Google Scholar 

  • Janasek D, Franzke J, Manz A (2006) Scaling and the design of miniaturized chemical-analysis systems. Nature 442:374–380

    Article  Google Scholar 

  • Kerhoas MK, Sollier E (2013) Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab Chip 13:3323–3346

    Article  Google Scholar 

  • Kerhoas MK, Kavanagh DM, Dhariwal RS, Campbell CJ, Desmulliez MPY (2010) Validation of a blood plasma separation system by biomarker detection. Lab Chip 10:1587–1595

    Article  Google Scholar 

  • Kralj JG, Lis MTW, Schmidt MA, Jensen KF (2006) Continuous dielectrophoretic size-based particle sorting. Anal Chem 78:5019–5025

    Article  Google Scholar 

  • Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36:492–506

    Article  Google Scholar 

  • MacDonald MP, Spalding GC, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426:421–424

    Article  Google Scholar 

  • Manz A, Eijkel JCT (2001) Miniaturization and chip technology. What can we expect? Pure Appl Chem 73:1555–1561

    Article  Google Scholar 

  • Marchalot J, Fouillet Y, Achard JL (2014) Multi-step microfluidic system for blood plasma separation: architecture and separation efficiency. Microfluid Nanofluid 17:167–180

    Article  Google Scholar 

  • Moorthy J, Beebe DJ (2003) In situ fabricated porous filters for microsystems. Lab Chip 3:62–66

    Article  Google Scholar 

  • Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659

    Article  Google Scholar 

  • Park CW, Shin SH, Kim GM, Jang JH, Gu YH (2006) A hemodynamic study on a marginal cell depletion layer of blood flow inside a microchannel. Key Eng Mater 326–328:863–866

    Article  Google Scholar 

  • Prabhakar A, Mukherji S (2010a) Microfabricated polymer chip with integrated U-bend waveguides for evanescent field absorption based detection. Lab Chip 10:748–754

    Article  Google Scholar 

  • Prabhakar A, Mukherji S (2010b) A novel C-shaped, gold nanoparticle coated, embedded polymer waveguide for localized surface plasmon resonance based detection. Lab Chip 10:3422–3425

    Article  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res 32:654–667

    Article  Google Scholar 

  • Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17:1–52

    Article  Google Scholar 

  • Schmid-Schonbein GW, Skalak R, Usami S, Chien S (1980) Cell distribution in capillary networks. Microvasc Res 19:18–44

    Article  Google Scholar 

  • Singh SG, Kulkarni A, Duttagupta SP, Puranik BP, Agrawal A (2008) Impact of aspect ratio on flow boiling of water in rectangular microchannels. Exp Thermal Fluid Sci 33:153–160

  • Singh SG, Bhide R, Duttagupta SP, Puranik BP, Agrawal A (2009) Two-phase flow pressure drop characteristics in trapezoidal silicon microchannels. IEEE Trans Compon Packag Technol 32:887–900

  • Sollier E, Rostaing H, Pouteau P, Fouillet Y, Achard L (2009) Passive microfluidics devices for plasma extraction from whole human blood. Sens Actuators B Chem 141:617–624

    Article  Google Scholar 

  • Sugii Y, Okuda R, Okamoto K, Madarame H (2005) Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique. Meas Sci Technol 16:1126–1130

    Article  Google Scholar 

  • Svanes K, Zweifach BW (1968) Variations in small blood vessel hematocrits produced in hypothermic rats by micro-occlusion. Microvasc Res 1:210–220

    Article  Google Scholar 

  • Tachi T, Kaji N, Tokeshi M, Baba Y (2009) Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidic system. Anal Chem 81:3194–3198

    Article  Google Scholar 

  • Thurston GB (1989) Plasma release-cell layering theory for blood flow. J Biorheol 26:199–214

    Google Scholar 

  • Tripathi S, Prabhakar A, Kumar N, Singh SG, Agrawal A (2013) Blood plasma separation in elevated dimension T-shaped microchannel. Biomed Microdevices 15:415–425

    Article  Google Scholar 

  • Umbrecht F, Müller D, Gattiker F, Boutry CM, Neuenschwander J, Sennhauser U, Hierold C (2009) Solvent assisted bonding of polymethylmethacrylate: characterization using the response surface methodology. Sens Actuators, A 156:121–128

    Article  Google Scholar 

  • Villarreal AIR, Arundell M, Carmona M, Samitier J (2010) High flow rate microfluidic device for blood plasma separation using a range of temperatures. Lab Chip 10:211–219

    Article  Google Scholar 

  • Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5:1233–1239

    Article  Google Scholar 

  • Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76:5465–5471

    Article  Google Scholar 

  • Yang S, Undar A, Zahn JD (2006) A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6:871–880

    Article  Google Scholar 

  • Yen RT, Fung YC (1978) Effect of velocity distribution on red cell distribution in capillary blood vessels. Am J Physiol 235(2):H251–H257

    Google Scholar 

  • Zhang XB, Wu ZQ, Wang K, Zhu J, Xu JJ, Xia XH, Chen HY (2012) Gravitational sedimentation induced blood delamination for continuous plasma separation on a microfluidics chip. Anal Chem 84:3780–3786

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge CEN (Center for Excellence in Nanotechnology), IIT Bombay for fabrication facility. Pooja Blood Bank, Mulund for providing human blood samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Agrawal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhakar, A., Kumar, Y.V.B.V., Tripathi, S. et al. A novel, compact and efficient microchannel arrangement with multiple hydrodynamic effects for blood plasma separation. Microfluid Nanofluid 18, 995–1006 (2015). https://doi.org/10.1007/s10404-014-1488-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1488-6

Keywords

Navigation