Advertisement

Microfluidics and Nanofluidics

, Volume 18, Issue 5–6, pp 919–929 | Cite as

Suspended microflows between vertical parallel walls

  • J. BerthierEmail author
  • K. A. Brakke
  • D. Gosselin
  • A.-G Bourdat
  • G. Nonglaton
  • N. Villard
  • G. Laffite
  • F. Boizot
  • G. Costa
  • G. Delapierre
Research Paper

Abstract

Open-surface microfluidic systems, i.e., microflows with a free surface, are finding increasing use in the fields of biotechnology, biology and medicine, especially in the domain of point-of-care and home-care systems. In such systems, the fluids are moved by capillarity and do not require the use of costly and/or bulky pumps, or other actuation systems. Recently, a subcategory of such flows, called “suspended microflows,” has appeared where the liquids flows between vertical walls without supporting walls at the bottom, i.e., surface tension is used to fill and maintain a fluid in microscale structures devoid of a ceiling and floor. The condition for the onset of spontaneous suspended flows has been developed in a preceding article. However, the dynamics of suspended microfluidics has not yet been investigated, and we present here a first analysis of their dynamics. Verifications of the theoretical model have been performed using colored water. Applications to the capillary motion of whole blood and to the motion of polymeric liquids have been done. In particular, we show that capillary filling of a suspended turning channel may be an approach to the realization of in situ giant porous micromembranes.

Keywords

Spontaneous capillary flow (SCF) Capillary force Suspended microchannel Contact angle Blood Polymeric liquids Porous membrane 

Notes

Acknowledgments

We thank J-C Mourrat (CNRS Lyon) for his help for the solution of the second-order differential equation.

Supplementary material

10404_2014_1482_MOESM1_ESM.docx (424 kb)
Supplementary material 1 (DOCX 423 kb)

Supplementary material 2 (AVI 253380 kb)

References

  1. Ahn S, Lee H, Puetzer J, Bonassar LJ, Kim G (2012) Fabrication of cell-laden three-dimensional alginate-scaffolds with an aerosol cross-linking process. J Mater Chem 22(36):18735CrossRefGoogle Scholar
  2. Berthier J, Brakke KA (2012) The physics of microdroplets. Wiley-Scrivener, New York, USACrossRefzbMATHGoogle Scholar
  3. Berthier J, Le Vot S, Tiquet P, Rivera F, Caillat P (2009) On the behavior of non-Newtonian fluids in microsystems for biotechnology. Proceedings from the Nanotech International Conference, 3–7 May 2009, Houston, TX, USAGoogle Scholar
  4. Berthier E, Theberge AB, Casavant BP, Guo C, Wang C, Beebe DJ, Keller NP (2012) Suspended microfluidics: an open and user-friendly technology platform for high-throughput metabolic studies. 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, October 28–November 1, 2012, Okinawa, JapanGoogle Scholar
  5. Berthier J, Brakke K, Furlani EP, Karampelas IH, Delapierre G (2014a) Open-surface microfluidics. Proceedings of the Nanotech International Conference, 15–19 June 2014, Washington DC, USAGoogle Scholar
  6. Berthier J, Brakke K, Berthier E (2014b) A general condition for spontaneous capillary flow in uniform cross-section microchannels. Microfluid Nanofluid J 16(4):779–785CrossRefGoogle Scholar
  7. Brakke K (1992) The surface evolver. Exp Math 1(2):141–165CrossRefzbMATHMathSciNetGoogle Scholar
  8. Casavant BP, Berthier E, Theberge AB, Berthier J, Montanez-Sauri SI, Bishel LL, Brakke K, Hedman CJ, Bushman WA, Keller NP, Beebe DJ (2013) Suspended microfluidics. PNAS 110(25):10111–10116CrossRefGoogle Scholar
  9. Chai J, Lu F, Li B, Kwok DY (2004) Wettability interpretation of oxygen plasma modified poly(methyl methacrylate). Langmuir 20(25):10919–10927CrossRefGoogle Scholar
  10. Choi Eunpyo, Jun Indong, Chang Hyung-Kwan, Park Kyung Min, Shin Heungsoo, Park Ki Dong, Park Jungyul (2012) Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients. Lab Chip 12:302CrossRefGoogle Scholar
  11. Dintenfass L (1966) Viscometry of human blood for shear rates of 0–100,000 sec−1. Nature 211:632–633CrossRefGoogle Scholar
  12. Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865–929CrossRefzbMATHGoogle Scholar
  13. Faivre M, Peltié P, Planat-Chrétien A, Cosnier M-L, Cubizolles M, Nougier C, Négrier C, Pouteau P (2011) Coagulation dynamics of a blood sample by multiple scattering analysis. J Biomed Opt 16(5):057001CrossRefGoogle Scholar
  14. Feng Jiansheng, Rothstein JP (2013) One-way wicking in open micro-channels controlled by channel topography. J Colloid Interface Sci 404:169–178CrossRefGoogle Scholar
  15. Gervais L, de Rooij N, Delamarche E (2011) Microfluidic chips for point-of-care immunodiagnostics. Adv Mater 23(24):H151–H176CrossRefGoogle Scholar
  16. Gibbs JW (1873) A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans Connect Acad Arts Sci 2:382–404Google Scholar
  17. Jokinen V, Suvanto P, Franssila S (2012) Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics 6:016501CrossRefGoogle Scholar
  18. Kachel S, Zhou Y, Scharfer P, Vrančić C, Petrich W, Schabel W (2014) Evaporation from open microchannel grooves. Lab Chip 14(4):771–778CrossRefGoogle Scholar
  19. Mann JJA, Romero L, Rye RR, Yost FG (1995) Flow of simple liquids down narrow V-grooves. Phys Rev E 52:3967CrossRefGoogle Scholar
  20. Merrill EW (1969) Rheology of blood. Physiol Rev 49(4):863–888Google Scholar
  21. Ouali FF, McHale G, Javed H, Trabi C, Shirtcliffe NJ, Newton MI (2013) Wetting considerations in capillary rise and imbibition in closed square tubes and open rectangular cross-section channels. Microfluid Nanofluid 15:309–326CrossRefGoogle Scholar
  22. Park J-G, Lee S-H, Ryu J-S, Hong Y-K, Kim T-G, Busnaina AA (2006) Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning. J Electrochem Soc 153(9):G811–G814CrossRefGoogle Scholar
  23. Pataky K, Braschler T, Negro A, Renaud P, Lutolf MP, Brugger J (2012) Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv Mater 24(3):391–396CrossRefGoogle Scholar
  24. Pries AR, Secomb TW, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res 32:654–667CrossRefGoogle Scholar
  25. Rye RR, Yost FG, JA Mann (1996) The flow of liquids in surface grooves. Langmuir 12:4625–4627CrossRefGoogle Scholar
  26. Samanta HS, Ray SK (2014) Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohydr Polym 99:666–678CrossRefGoogle Scholar
  27. Shibeshi SS, Collins WE (2005) The rheology of blood flow in a branched arterial system. Appl Rheol 15(6):398–405Google Scholar
  28. Steffe JF (1996) Rheological methods in food process engineering, 2nd edn. Freeman Press, East Lansing, MI, USAGoogle Scholar
  29. Steinhaus B, Shen AQ, Sureshkumar R (2007) Dynamics of viscoelastic fluid filaments in microfluidic devices. Phys Fluids 19:073103CrossRefGoogle Scholar
  30. Tung C-K, Krupa O, Apaydin E, Liou J-J, Diaz-Santana A, Kim BJ, Wu M (2013) A contact line pinning based microfluidic platform for modeling physiological flows. Lab-Chip 13:3876–3885CrossRefGoogle Scholar
  31. Weislogel MM, Chen Y, Bolleddula D (2008) A better nondimensionalization scheme for slender laminar flows: the Laplacian operator scaling method. Phys Fluids 20:093602CrossRefGoogle Scholar
  32. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418CrossRefGoogle Scholar
  33. Yost FG, Rye RR, Mann JA (1997) Solder wetting kinetics in narrow V-grooves. Acta Mater 45:5337–5345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. Berthier
    • 1
    Email author
  • K. A. Brakke
    • 2
  • D. Gosselin
    • 1
    • 3
  • A.-G Bourdat
    • 1
  • G. Nonglaton
    • 1
  • N. Villard
    • 1
  • G. Laffite
    • 1
  • F. Boizot
    • 1
  • G. Costa
    • 1
  • G. Delapierre
    • 1
  1. 1.Department of Technology for Life Sciences and Health CareCEA-LETIGrenobleFrance
  2. 2.Department of MathematicsSusquehanna UniversitySelinsgroveUSA
  3. 3.Grenoble INP – PhelmaGrenoble Cedex 01France

Personalised recommendations