Microfluidics and Nanofluidics

, Volume 18, Issue 5–6, pp 887–895 | Cite as

Hydrodynamic and electrodynamic flow mixing in a novel total glass chip mixer with streamline herringbone pattern

  • Fang Fang
  • Na Zhang
  • Kun Liu
  • Zhi-Yong WuEmail author
Research Paper


Mixing is a precondition for efficient chemical and biochemical reactions, especially in limited time and space, such as in a laboratory on a chip system under various flow conditions. In this work, a novel method of preparing a total glass chip mixer with a streamline herringbone structure is presented. The main mixing channel and the embedded herringbone pattern were simultaneously generated by one-step photolithographic exposure and one-step wet etching of glass substrate. The mixing performance under typical pressure flow as well as high DC voltage-activated migration conditions, thanks to the charged and stable surface nature of the glass substrate, was investigated experimentally by microscope fluorescent imaging using charged and neutral fluorescence molecular probes, respectively. The passive chip mixer was effective for both hydrodynamic and electrodynamics migration conditions, and over 90 % mixing was achieve in 20 mm in the mixing channel of only 300 nL. The applicability of the chip was demonstrated by a chemiluminescence reaction with enhanced signal and detection power. The chemical resistive surface, integrity, transparency, and high mixing efficiency of this passive chip mixer are advantageous for microanalytical systems of various flow conditions, especially miniaturized chromatography or electrophoresis systems.


Flow mixing Glass passive chip mixer Herringbone Electroosmotic flow Pressure flow Electrophoresis Chemiluminescence Luminol 



Financial supports from Northeastern University, NSFC (20975018, 51376039) and Fundamental Research Funds for the Central Universities (N120403006) are greatly appreciated. Prof. Shu-Kun Xu is thanked for her kind access of the fluorescent microscope.


  1. Al Lawati HAJ, Suliman FEO, Al Kindy SMZ, Al-Lawati AM, Varma GB, Nour IEM (2010) Enhancement of on chip chemiluminescence signal intensity of tris(1,10-phenanthroline)-ruthenium(II) peroxydisulphate system for analysis of chlorpheniramine maleate in pharmaceutical formulations. Talanta 82:1999–2002. doi: 10.1016/j.talanta.2010.08.018
  2. Al Lawati HAJ, Kadavilpparampu AM, Suliman FO (2014) Combination of capillary micellar liquid chromatography with on-chip microfluidic chemiluminescence detection for direct analysis of buspirone in human plasma. Talanta 127:230–238. doi: 10.1016/j.talanta.2014.03.052
  3. Aubin J, Fletcher DF, Bertrand J, Xuereb C (2003) Characterization of the mixing quality in micromixers. Chem Eng Technol 26:1262–1270. doi: 10.1002/ceat.200301848 CrossRefGoogle Scholar
  4. Aubin J, Fletcher DF, Xuereb C (2005) Design of micromixers using CFD modelling. Chem Eng Sci 60:2503–2516. doi: 10.1016/j.ces.2004.11.043
  5. Bockelmann H, Heuveline V, Barz DPJ (2012) Optimization of an electrokinetic mixer for microfluidic applications. Biomicrofluidics 6:024123-024123-024118. doi: 10.1063/1.4722000
  6. Chen C-L, Yau H-T, Cho C-C, Chen Co-K (2009) Enhancement of microfluidic mixing using harmonic and chaotic electric fields. Int J Nonlin Sci Num 10:1545–1553Google Scholar
  7. Chen H-P, Yeh C-Y, Hung P-C, Wang S-C (2014) Using induced electroosmotic micromixer to enhance the reproducibility of chemiluminescence intensity. Electrophoresis 35:258–262. doi: 10.1002/elps.201300373 CrossRefGoogle Scholar
  8. Chiem N, Lockyear-Shultz L, Andersson P, Skinner C, Harrison DJ (2000) Room temperature bonding of micromachined glass devices for capillary electrophoresis. Sens Actuators B: Chem 63:147–152. doi: 10.1016/S0925-4005(00)00351-8
  9. Cho C-C, Chen C-L, Chen Co-K (2012) Mixing enhancement in crisscross micromixer using aperiodic electrokinetic perturbing flows. Int J Heat Mass Transfer 55:2926–2933. doi: 10.1016/j.ijheatmasstransfer.2012.02.006 CrossRefGoogle Scholar
  10. Chung Y-C, Hsu Y-L, Jen C-P, Lu M-C, Lin Y-C (2004) Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber. Lab Chip 4:70–77. doi: 10.1039/B310848C CrossRefGoogle Scholar
  11. Co-K Chen, Cho C-C (2008) Electrokinetically driven flow mixing utilizing chaotic electric fields. Microfluid Nanofluid 5:785–793. doi: 10.1007/s10404-008-0286-4 CrossRefGoogle Scholar
  12. Daghighi Y, Li D (2013) Numerical study of a novel induced-charge electrokinetic micro-mixer. Anal Chim Acta 763:28-37. doi: 10.1016/j.aca.2012.12.010
  13. Dai J, Guan Y-X, Wang S-L, Wu Z-Y, Fang Z-L (2005) Feature characterization of microfabricated microfluidic chips by PDMS replication and CCD imaging. Anal Bioanal Chem 381:839–843. doi: 10.1007/s00216-004-3012-4 CrossRefGoogle Scholar
  14. Fu L-M, Yang R-J, Lin C-H, Chien Y-S (2005) A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency. Electrophoresis 26:1814–1824. doi: 10.1002/elps.200410222 CrossRefGoogle Scholar
  15. Fu X, Liu S, Ruan X, Yang H (2006) Research on staggered oriented ridges static micromixers. Sens Actuators B: Chem 114:618–624. doi: 10.1016/j.snb.2005.06.023
  16. Gao Y, Reenen A, Hulsen MA, Jong AM, Prins MWJ, Toonder JMJ (2014) Chaotic fluid mixing by alternating microparticle topologies to enhance biochemical reactions. Microfluid Nanofluid 16:265–274. doi: 10.1007/s10404-013-1209-6 CrossRefGoogle Scholar
  17. Huang X, Ren J (2006) Chemiluminescence detection for capillary electrophoresis and microchip capillary electrophoresis. TrAC Trends Anal Chem 25:155–166. doi: 10.1016/j.trac.2005.07.001
  18. Huang X, Gordon MJ, Zare RN (1988) Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. Anal Chem 60:1837–1838. doi: 10.1021/ac00168a040 CrossRefGoogle Scholar
  19. Huang C-C, Wu M-D, Liang D, Yu J, Shih P-J, Shih W-P (2012) Fabrication and application of iron(III)-oxide nanoparticle/polydimethylsiloxane composite cone in microfluidic channels. J Nanomater. doi: 10.1155/2012/986454
  20. Jain M, Yeung A, Nandakumar K (2009) Efficient micromixing using induced-charge electroosmosis. J Microelectromech S 18:376–384. doi: 10.1109/jmems.2008.2010849 CrossRefGoogle Scholar
  21. Jain M, Rao A, Nandakumar K (2013) Numerical study on shape optimization of groove micromixers. Microfluid Nanofluid 15:689–699CrossRefGoogle Scholar
  22. Jia Z-J, Fang Q, Fang Z-L (2004) Bonding of glass microfluidic chips at room temperatures. Anal Chem 76:5597–5602. doi: 10.1021/ac0494477 CrossRefGoogle Scholar
  23. Johnson TJ, Ross D, Locascio LE (2001) Rapid microfluidic mixing. Anal Chem 74:45–51. doi: 10.1021/ac010895d CrossRefGoogle Scholar
  24. Ju J, Warrick J (2013) Passive micromixer using by convection and surface tension effects with air-liquid interface. Biochip J 7:361–366. doi: 10.1007/s13206-013-7407-1 CrossRefGoogle Scholar
  25. Lee SJ, Kim D (2012) Millisecond-order rapid micromixing with non-equilibrium electrokinetic phenomena. Microfluid Nanofluid 12:897–906. doi: 10.1007/s10404-011-0918-y CrossRefGoogle Scholar
  26. Lee C-Y, Chang C-L, Wang Y-N, Fu L-M (2011) Microfluidic mixing: a review. Int J Mol Sci 12:3263–3287. doi: 10.3390/ijms12053263 CrossRefGoogle Scholar
  27. Liu Y, Liu Y, Zhou M, Huang K, Cao J, Wang H, Chen Y (2014) Chemiluminescence detection of protein in capillary electrophoresis using aptamer-functionalized gold nanoparticles as biosensing platform. J Chromatogr A 1340:128–133. doi: 10.1016/j.chroma.2014.03.011
  28. Lok KS, Kwok YC, Nguyen N-T (2011) Passive micromixer for luminol-peroxide chemiluminescence detection. Analyst 136:2586–2591. doi: 10.1039/C1AN15280G CrossRefGoogle Scholar
  29. Mansur EA, Ye M, Wang Y, Dai Y (2008) A state-of-the-art review of mixing in microfluidic mixers. Chin J Chem Eng 16:503–516. doi: 10.1016/s1004-9541(08)60114-7 CrossRefGoogle Scholar
  30. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens Actuators B: Chem 1: 244–248. doi: 10.1016/0925-4005(90)80209-I
  31. Meisel I, Ehrhard P (2006) Electrically-excited (electroosmotic) flows in microchannels for mixing applications. EUR J Mech B-Fluid 25:491–504. doi: 10.1016/j.euromechflu.2005.12.002
  32. Min KI et al (2010) Monolithic and flexible polyimide film microreactors for organic microchemical applications fabricated by laser ablation. Angew Chem Int Ed 49:7063–7067. doi: 10.1002/anie.201002004 CrossRefGoogle Scholar
  33. Munson MS, Yager P (2004) Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer. Anal Chim Acta 507:63–71. doi: 10.1016/j.aca.2003.11.064
  34. Ng WY, Goh S, Lam YC, Yang C, Rodriguez I (2009) DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab Chip 9:802–809. doi: 10.1039/b813639d CrossRefGoogle Scholar
  35. Nguyen N-T, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1. doi: 10.1088/0960-1317/15/2/R01
  36. Phelan FR Jr, Kutty P, Pathak JA (2008) An electrokinetic mixer driven by oscillatory cross flow. Microfluid Nanofluid 5:101–118. doi: 10.1007/s10404-007-0231-y CrossRefGoogle Scholar
  37. Rezk AR, Qi A, Friend JR, Li WH, Yeo LY (2012) Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab Chip 12:773–779CrossRefGoogle Scholar
  38. Rida A, Gijs MAM (2004) Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Anal Chem 76:6239–6246. doi: 10.1021/ac049415j CrossRefGoogle Scholar
  39. Roman GT, Hlaus T, Bass KJ, Seelhammer TG, Culbertson CT (2005) Sol − gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic mobilities and hydrophilic channel wall characteristics. Anal Chem 77:1414–1422. doi: 10.1021/ac048811z CrossRefGoogle Scholar
  40. Sato H, Ito S, Tajima K, Orimoto N, Shoji S (2005) PDMS microchannels with slanted grooves embedded in three walls to realize efficient spiral flow. Sens Actuators A: Phys 119:365–371. doi: 10.1016/j.sna.2004.08.033
  41. Seo HS, Kim YJ (2014) Effect of electrode positions on the mixing characteristics of an electroosmotic micromixer. J Nanosci Nanotechno 14:6167–6171. doi: 10.1166/jnn.2014.8802 CrossRefGoogle Scholar
  42. Seo H-S, Han B, Kim Y-J (2012) Numerical study on the mixing performance of a ring-type electroosmotic micromixer with different obstacle configurations. J Nanosci Nanotechnol 12:4523–4530. doi: 10.1166/jnn.2012.6188 CrossRefGoogle Scholar
  43. Stroock AD, Dertinger SK, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651. doi: 10.1126/science.1066238 CrossRefGoogle Scholar
  44. Vafaie R, Mehdipoor M, Pourmand A, Poorreza E, Ghavifekr H (2013) An electroosmotically-driven micromixer modified for high miniaturized microchannels using surface micromachining. Biotechnol Bioprocess Eng 18:594–605. doi: 10.1007/s12257-012-0431-5 CrossRefGoogle Scholar
  45. Wang X, Yin X, Cheng H, Shen H (2010) A compact and low-cost miniaturized analysis system composed of microchip electrophoresis and chemiluminescence detection manipulated by a simple subatmospheric pressure fluid-driven device. Analyst 135:1663–1671. doi: 10.1039/C005216G CrossRefGoogle Scholar
  46. Wu Z-Y, Fang F, Josserand J, Girault HH (2007) On-column conductivity detection in capillary-chip electrophoresis. Electrophoresis 28:4612–4619. doi: 10.1002/elps.200700456 CrossRefGoogle Scholar
  47. Xu Z-R, Fang Z-L (2004) Composite poly(dimethylsiloxane)/glass microfluidic system with an immobilized enzymatic particle-bed reactor and sequential sample injection for chemiluminescence determinations. Anal Chim Acta 507:129–135. doi: 10.1016/j.aca.2003.12.039
  48. Yu S, Jeon T-J, Kim SM (2012) Active micromixer using electrokinetic effects in the micro/nanochannel junction. Chem Eng J 197:289–294. doi: 10.1016/j.cej.2012.05.044 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Research Center for Analytical SciencesNortheastern UniversityShenyangPeople’s Republic of China
  2. 2.Chemistry DepartmentNortheastern UniversityShenyangPeople’s Republic of China
  3. 3.Research Institute of Vacuum and FluidNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations