Microfluidics and Nanofluidics

, Volume 18, Issue 5–6, pp 819–828 | Cite as

Quantitative characterization of high molecular weight polymer solutions in microfluidic hyperbolic contraction flow

  • Alfredo Lanzaro
  • Zhuo Li
  • Xue-Feng YuanEmail author
Research Paper


Nonlinear flows of polyacrylamide (PAAm) (\(M_{\text{w}} = 5.7 \times 10^{6}\,{\text{g}}/{\text{mol}}\)) aqueous solutions through a micro-fabricated, hyperbolic contraction geometry with high Hencky strain (\(\varepsilon_{{\text{H}}} = 3.7\)) have been characterized by micro-particle image velocimetry (\(\mu \)-PIV). Various flow dynamics regimes in a range of Weissenberg number (Wi) and Reynolds number (Re) are presented in a WiRe diagram. The symmetric corner vortices are only observed in the flow of low concentration PAAm solution (\(c/c^{*}=3.3\)). In a higher concentration (\(c/c^{*}=8.3\)), PAAm solution exhibits chaotic-like flow patterns in the strong nonlinear flow regime (\(Wi>350\)). Extensional deformation in nonlinear flows of Wi up to 860 has been analyzed. Furthermore, the local stretch experienced by the polymer chain in complex flow is systematically quantified and linked to the corresponding velocity vector fields, which are valuable for understanding the highly nonlinear flow phenomena.


Polyacrylamide Microfabricated Hyperbolic contraction µ-PIV Hencky strain Extensional flow 



The authors would like to acknowledge the financial support of the Engineering and Physical Sciences Research Council (EP/E032699) and Linkam Scientific Instruments Ltd., and to thank Malcolm Mackley, Jeff Odell, Simon Haward and Sunday Omowunmi for insightful discussions.


  1. Campo-Deaño L, Galindo-Rosales FJ, Pinho FT, Alves MA, Oliveira MS (2011) Flow of low viscosity Boger fluids through a microfluidic hyperbolic contraction. J Nonnewton Fluid Mech 166(21):1286–1296CrossRefzbMATHGoogle Scholar
  2. Chan EY, Goncalves NM, Haeusler RA, Hatch AJ, Larson JW, Maletta AM, Yantz GR, Carstea ED, Fuchs M, Wong GG et al (2004) DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Res 14(6):1137–1146CrossRefGoogle Scholar
  3. Cogswell F (1978) Converging flow and stretching flow: a compilation. J Nonnewton Fluid Mech 4(1):23–38CrossRefGoogle Scholar
  4. François J, Schwartz T, Weill G (1980) Crossover from the theta to the excluded volume single chain statistics: new experimental evidences and a modified Blob model. Macromolecules 13(3):564–570CrossRefGoogle Scholar
  5. Groisman A, Enzelberger M, Quake SR (2003) Microfluidic memory and control devices. Science 300(5621):955–958CrossRefGoogle Scholar
  6. Gulati S, Muller SJ, Liepmann D (2008) Direct measurements of viscoelastic flows of DNA in a 2: 1 abrupt planar micro-contraction. J Nonnewton Fluid Mech 155(1):51–66CrossRefGoogle Scholar
  7. Haward SJ, Odell JA, Li Z, Yuan X-F (2010) The rheology of polymer solution elastic strands in extensional flow. Rheol Acta 49(7):781–788CrossRefGoogle Scholar
  8. Hur JS, Shaqfeh ES, Babcock HP, Smith DE, Chu S (2001) Dynamics of dilute and semidilute DNA solutions in the start-up of shear flow. J Rheol (1978-present) 45(2):421–450CrossRefGoogle Scholar
  9. Hur JS, Shaqfeh ES, Babcock HP, Chu S (2002) Dynamics and configurational fluctuations of single DNA molecules in linear mixed flows. Phys Rev E 66(1):011915CrossRefGoogle Scholar
  10. James DF (1991) Flow in a converging channel at moderate Reynolds numbers. AIChE J 37(1):59–64CrossRefGoogle Scholar
  11. Kang K, Lee LJ, Koelling KW (2005) High shear microfluidics and its application in rheological measurement. Exp Fluids 38(2):222–232CrossRefGoogle Scholar
  12. Kang K, Koelling KW, Lee LJ (2006) Microdevice end pressure evaluations with Bagley correction. Microfluid Nanofluid 2(3):223–235CrossRefGoogle Scholar
  13. Kim L, Toh Y-C, Voldman J, Yu H (2007) A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 7(6):681–694CrossRefGoogle Scholar
  14. Lanzaro A, Yuan X-F (2011) Effects of contraction ratio on non-linear dynamics of semi-dilute, highly polydisperse PAAm solutions in microfluidics. J Nonnewton Fluid Mech 166(17):1064–1075CrossRefGoogle Scholar
  15. Lanzaro A, Yuan X-F (2014) A quantitative analysis of spatial extensional rate distribution in nonlinear viscoelastic flows. J Nonnewton Fluid Mech 207:32–41CrossRefGoogle Scholar
  16. Larson R, Hu H, Smith D, Chu S (1999) Brownian dynamics simulations of a DNA molecule in an extensional flow field. J Rheol (1978-present) 43(2):267–304CrossRefGoogle Scholar
  17. Li Z, Yuan X-F, Haward SJ, Odell JA, Yeates S (2011) Non-linear dynamics of semi-dilute polydisperse polymer solutions in microfluidics: a study of a benchmark flow problem. J Nonnewton Fluid Mech 166(16):951–963CrossRefGoogle Scholar
  18. Li Z, Yuan X-F, Haward SJ, Odell JA, Yeates S (2011) Non-linear dynamics of semi-dilute polydisperse polymer solutions in microfluidics: effects of flow geometry. Rheol Acta 50(3):277–290CrossRefGoogle Scholar
  19. McKinley GH, Rodd LE, Oliverira MS, Cooper-White J (2007) Extensional flows of polymer solutions in microfluidic converging/diverging geometries. J Cent South Univ Technol 14(1):6–9CrossRefGoogle Scholar
  20. Meinhart C, Wereley S, Gray M (2000) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11(6):809CrossRefGoogle Scholar
  21. Meinhart CD, Wereley ST (2003) The theory of diffraction-limited resolution in microparticle image velocimetry. Meas Sci Technol 14(7):1047CrossRefGoogle Scholar
  22. Mulligan MK, Rothstein JP (2011) The effect of confinement-induced shear on drop deformation and breakup in microfluidic extensional flows. Phys Fluids (1994-present) 23(2):022004CrossRefGoogle Scholar
  23. Oliveira MSN, Alves MA, McKinley GH, Pinho FT (2006) Extensional flow of water and a semi-dilute aqueous solution of polyethylene oxide through microfabricated hyperbolic contractions. In: 13th Int symp on applications of laser techniques to fluid mechanics, Lisbon, Portugal, 26–29 JuneGoogle Scholar
  24. Oliveira MSN, Alves MA, Pinho FT, McKinley GH (2007) Viscous flow through microfabricated hyperbolic contractions. Exp Fluids 43(2–3):437–451CrossRefGoogle Scholar
  25. Omowunmi SC, Yuan X-F (2013) Time-dependent non-linear dynamics of polymer solutions in microfluidic contraction flow: a numerical study on the role of elongational viscosity. Rheol Acta 52(4):337–354CrossRefGoogle Scholar
  26. Perkins TT, Smith DE, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276(5321):2016–2021CrossRefGoogle Scholar
  27. Pipe CJ, Majmudar TS, McKinley GH (2008) High shear rate viscometry. Rheol Acta 47(5–6):621–642CrossRefGoogle Scholar
  28. Randall GC, Schultz KM, Doyle PS (2006) Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices. Lab Chip 6(4):516–525CrossRefGoogle Scholar
  29. Rodd LE, Scott TP, Boger DV, Cooper-White JJ, McKinley GH (2005) The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-fabricated geometries. J Nonnewton Fluid Mech 129(1):1–22CrossRefGoogle Scholar
  30. Rodd L, Cooper-White J, Boger D, McKinley G (2007) Role of the elasticity number in the entry flow of dilute polymer solutions in micro-fabricated contraction geometries. J Nonnewton Fluid Mech 143(2):170–191CrossRefGoogle Scholar
  31. Santiago JG, Wereley ST, Meinhart CD, Beebe D, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25(4):316–319CrossRefGoogle Scholar
  32. Schroeder CM, Babcock HP, Shaqfeh ES, Chu S (2003) Observation of polymer conformation hysteresis in extensional flow. Science 301(5639):1515–1519CrossRefGoogle Scholar
  33. Schroeder CM, Teixeira RE, Shaqfeh ES, Chu S (2005) Dynamics of DNA in the flow-gradient plane of steady shear flow: observations and simulations. Macromolecules 38(5):1967–1978CrossRefGoogle Scholar
  34. Smith DE, Chu S (1998) Response of flexible polymers to a sudden elongational flow. Science 281(5381):1335–1340CrossRefGoogle Scholar
  35. Sousa P, Pinho F, Oliveira M, Alves M (2011) Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics 5(1):014108CrossRefGoogle Scholar
  36. White F (1991) Viscous fluid flow. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical ScienceThe University of ManchesterManchesterUK
  2. 2.State Key Laboratory of Pollution Control and Resource ReuseTongji UniversityShanghaiPeople’s Republic of China
  3. 3.National Supercomputer Centre in Guangzhou, Research Institute on Application of High Performance ComputingSun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations