Skip to main content

Self-assembly and novel planetary motion of ferrofluid drops in a rotational magnetic field

Abstract

We experimentally investigate the motion of a ferrodrop array in a rotating magnetic field. Magnetized and driven by the external field, the ferrodrops are stretched and self-aligned to form a drop array along the field orientation. An interesting planet-like dual rotation, including local self-spins of individual drops and a global revolution of the drop array, is newly identified. While the drops spin nearly synchronized with the external field, the revolution always lags behind the field and appears a forth and back movement. Prominence of the net revolutionary movement depends on the strength and uniformity of the overall field as well as the number of drops containing in the array. In general, more uniform and stronger rotating field leads to a more prominent global revolution. Phenomenon of such planetary motion can be applied to mix two fluids more effectively than self-spin drops.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Afkhami S, Tyler AJ, Renardy Y, Renardy MR, St. Pierre TG, Woodward RC, Riffle JS (2010) Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J Fluid Mech 663:358

    Article  MATH  MathSciNet  Google Scholar 

  2. Ando B, Ascia A, Baglio S, Beninato A (2009a) The ‘‘one drop’’ ferrofluidic pump with analog control. Sens Actuators A Phys 156(1):251–256

    Article  Google Scholar 

  3. Ando B, Asciam A, Baglio S, Pitrone N (2009b) Ferrofluidic pumps: a valuable implementation without moving parts. IEEE Trans Instrum Meas 58(9):3232–3237

    Article  Google Scholar 

  4. Bacri JC, Salin D (1982) Instability of ferrofluid magnetic drops under magnetic field. J Phys Lett 43:L649–L654

    Article  Google Scholar 

  5. Bacri JC, Cebers A, Perzynski P (1994) Behaviour of magnetic fluid microdrop in a rotating magnetic field. Phys Rev Lett 72:270

    Article  Google Scholar 

  6. Banerjee U, Bit P, Ganguly R, Hardt S (2012) Aggregation dynamics of particles in a microchannel due to an applied magnetic field. Microfluid Nanofluid 13:565–577

    Article  Google Scholar 

  7. Biswal S, Gast A (2004) Rotational dynamics of semiflexible paramagnetic particle chains. Phys Rev E 69:041406

    Article  Google Scholar 

  8. Bormashenko E, Pogreb R, Bormashenko Y, Musin A, Stein T (2008) New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces. Langmuir 24(21):12119–12122

    Article  Google Scholar 

  9. Cebers A (2002) Dynamics of an elongated magnetic droplet in a rotating field. Phys Rev E 66:061402

    Article  Google Scholar 

  10. Cebers A, Ozols M (2006) Dynamics of an active magnetic particle in a rotating magnetic field. Phys Rev E 73:021505

    Article  Google Scholar 

  11. Chen CY, Cheng ZY (2008) An experimental study on Rosensweig instability of a ferrofluid droplet. Phys Fluids 20:054105

    Article  Google Scholar 

  12. Chen CY, Li CS (2010) Ordered microdroplet formations of thin ferrofluid layer breakups. Phys Fluids 22:014105

    Article  Google Scholar 

  13. Chen CY, Tsai WK, Miranda JA (2008) Hybrid ferrohydrodynamic instability: coexisting peak and labyrinthine patterns. Phys Rev E 77:056306

    Article  Google Scholar 

  14. Chen CY, Chen C, Lee WH (2009a) Experiments on breakups of a magnetic fluid drop through a micro-orifice. J Magn Magn Mater 321(20):3520–3525

    Article  Google Scholar 

  15. Chen CY, Yang YS, Miranda JA (2009b) Miscible ferrofluid patterns in a radial magnetic field. Phys Rev E 80:016314

    Article  Google Scholar 

  16. Chen CY, Wu WL, Miranda JA (2010) Magnetically induced spreading and pattern selection in thin ferrofluid drops. Phys Rev E 82:056321

    Article  Google Scholar 

  17. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437:862

    Article  Google Scholar 

  18. Flament C, Lacis S, Bacri JC, Cebers A, Neveu S, Perzynski R (1996) Measurements of ferrofluid surface tension in confined geometry. Phys Rev E 53(5):4801–4806

    Article  Google Scholar 

  19. Gao Y, Hulsen M, Kang TG, den Toonder J (2012) Numerical and experimental study of a rotating magnetic particle chain in a viscous fluid. Phys Rev E 86:041503

    Article  Google Scholar 

  20. Gao Y, Reenen A, Hulsen M, Jong A, Prins M, den Toonder J (2014) Chaotic fluid mixing by alternating microparticle topologies to enhance biochemical reactions. Microfluid Nanofluid 16:265

    Article  Google Scholar 

  21. Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6):2243–2245

    Article  Google Scholar 

  22. Kang TG, Hulsen M, Anderson P, den Toonder J, Meijer H (2007) Chaotic mixing induced by a magnetic chain in a rotating magnetic field. Phys Rev E 76:066303

    Article  Google Scholar 

  23. Karle M, Wohrle J, Miwa J, Paust N, Roth G, Zengerle R, von Stetten F (2011) Controlled counter-flow motion of magnetic bead chains rolling along microchannels. Microfluid Nanofluid 10:935–939

    Article  Google Scholar 

  24. Lacharme F, Vandevyver C, Gijs MAM (2009) Magnetic beads retention device for sandwich immunoassay comparison of off-chip and on-chip antibody incubation. Microfluid Nanofluid 7:479–487

    Article  Google Scholar 

  25. Lebedev A, Engel A, Morozov K, Bauke H (2003) Ferrofluid drops in rotating magnetic fields. New J Phys 5:57

    Article  Google Scholar 

  26. Lee CP, Yang ST, Wei ZH (2012a) Ordered magnetic microdroplets array on magnetic films. J Appl Phys 111:07B331

    Google Scholar 

  27. Lee CP, Tsai HY, Lai MF (2012b) Field evolution of self-assembled lattice structures of ferrofluid microdroplets on magnetic disc arrays. Soft Matter 8:11537–11543

    Article  Google Scholar 

  28. Li YH, Chen CY, Sheu ST, Pai JM (2012a) Dynamics of a microchain of superparamagnetic beads in an oscillating field. Microfluid Nanofluid 13:579–588

    Article  Google Scholar 

  29. Li YH, Sheu ST, Pai JM, Chen CY (2012b) Manipulations of oscillating micro magnetic particle chains. J Appl Phys 111:07A924

    Google Scholar 

  30. Li YH, Lin HC, Chen CY (2013a) Trajectory shift of magnetic microchains in an oscillating field. Microfluid Nanofluid 14:831–838

    Article  Google Scholar 

  31. Li YH, Lin HC, Chen CY (2013b) Steering of magnetic micro-swimmers. IEEE Trans Magn 49(7):4120–4123

    Article  Google Scholar 

  32. Lin HC, Li YH, Chen CY (2014) Structural instability of an oscillating superparamagnetic micro-bead chain. Microfluid Nanofluid 17:73–84

    Article  Google Scholar 

  33. Liu KA, I L (2013) Bacterial turbulence reduction by passive magnetic particle chains. Phys Rev E 88:033004

    Article  Google Scholar 

  34. Liu J, Tan SH, Yap YF, Ng MY, Nguyen NT (2011) Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid Nanofluid 11(2):177–187

    Article  Google Scholar 

  35. Liu Z, Wu J, Zhen H, Hu X (2013) Numerical simulation on head-on binary collision of gel propellant droplets. Energies 6:204–219

    Article  Google Scholar 

  36. Long Z, Shetty A, Solomon M, Larson R (2009) Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface. Lab Chip 9(11):1567–1575

    Article  Google Scholar 

  37. Melle S, Martin J (2003) Chain model of a magnetorheological suspension in a rotating field. J Chem Phys 118(21):9875

    Article  Google Scholar 

  38. Melle S, Calderon O, Rubio M, Fuller G (2003) Microstructure evolution in magnetorheological suspensions governed by Mason number. Phys Rev E 68:041503

  39. Melle S, Calderon O, Fuller G, Rubio M (2002a) Polarizable particle aggregation under rotating magnetic fields using scattering dichroism. J Colloid Interface Sci 247:200

    Article  Google Scholar 

  40. Melle S, Calderon O, Rubio M, Fuller G (2002b) Rotational dynamics in dipolar colloidal suspensions: video microscopy experiments and simulations results. J Nonnewton Fluid Mech 102(2):135–148

    Article  MATH  Google Scholar 

  41. Murshed S, Tan SH, Nguyen NT, Wong TN, Yobas L (2009) Microdroplet formation of water and nanofluids in heat-induced microfluidic t-junction. Micro Nanosyst 6(6):253–259

    Google Scholar 

  42. Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12:1

    Article  Google Scholar 

  43. Nguyen NT, Chai MF (2009) A stepper micropump for ferrofluid driven microfluidic systems. Micro Nanosyst 1(1):17–21

    Article  Google Scholar 

  44. Nguyen NT, Zhu GP, Chua YC, Phan VN, Tan SH (2010) Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet. Langmuir 26(15):12553–12559

    Article  Google Scholar 

  45. Pan KL, Law CK, Zhou B (2008) Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision. J Appl Phys 103:064901:1–064901:11

    Google Scholar 

  46. Petousis I, Homburg E, Derks R, Dietzel A (2007) Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields. Lab Chip 7:1746

    Article  Google Scholar 

  47. Qian J, Law CK (1997) Regimes of coalescence and separation in droplet collision. J Fluid Mech 331:59

    Article  Google Scholar 

  48. Roy T, Sinha A, Chakraborty S, Ganguly R, Puri I (2009) Magnetic microsphere-based mixers for microdroplets. Phys Fluids 21:027101

    Article  Google Scholar 

  49. Sun Y, Kwok YC, Foo-Peng Lee P, Nguyen NT (2009) Rapid amplification of genetically modified organisms using a circular ferrofluid-driven PCR microchip. Anal Bioanal Chem 394(5):1505–1508

    Article  Google Scholar 

  50. Tan SH, Nguyen NT, Yobas L, Kang TG (2010) Formation and manipulation of ferrofluid droplets at a microfluidic t-junction. J Micromech Microeng 20(4):045004

    Article  Google Scholar 

  51. Timonen J, Latikka M, Leibler L, Ras R, Ikkala O (2013) Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341(6143):253–257

    Article  Google Scholar 

  52. Xue Y, Wang H, Zhao Y, Dai L, Feng L, Wang X, Lin T (2010) Magnetic liquid marbles: a ‘‘precise’’ miniature reactor. Adv Mater 22(43):1–5

    Article  Google Scholar 

  53. Zhu GP, Nguyen NT, Ramanujan R, Huang XY (2011) Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir 27(24):14834–14841

    Article  Google Scholar 

Download references

Acknowledgments

The research is supported by the National Science Council of Republic of China (Taiwan) through Grant NSC 102-2221-E-009-051-MY3. Experimental assistances by Mr. Chia-Wei Hong are also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ching-Yao Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, CY., Hsueh, HC., Wang, SY. et al. Self-assembly and novel planetary motion of ferrofluid drops in a rotational magnetic field. Microfluid Nanofluid 18, 795–806 (2015). https://doi.org/10.1007/s10404-014-1472-1

Download citation

Keywords

  • External Field
  • Weber Number
  • Field Configuration
  • Point Dipole
  • Planetary Motion