Advertisement

Microfluidics and Nanofluidics

, Volume 18, Issue 5–6, pp 795–806 | Cite as

Self-assembly and novel planetary motion of ferrofluid drops in a rotational magnetic field

  • Ching-Yao ChenEmail author
  • Hao-Chung Hsueh
  • Sheng-Yan Wang
  • Yan-Hom Li
Research Paper

Abstract

We experimentally investigate the motion of a ferrodrop array in a rotating magnetic field. Magnetized and driven by the external field, the ferrodrops are stretched and self-aligned to form a drop array along the field orientation. An interesting planet-like dual rotation, including local self-spins of individual drops and a global revolution of the drop array, is newly identified. While the drops spin nearly synchronized with the external field, the revolution always lags behind the field and appears a forth and back movement. Prominence of the net revolutionary movement depends on the strength and uniformity of the overall field as well as the number of drops containing in the array. In general, more uniform and stronger rotating field leads to a more prominent global revolution. Phenomenon of such planetary motion can be applied to mix two fluids more effectively than self-spin drops.

Keywords

External Field Weber Number Field Configuration Point Dipole Planetary Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research is supported by the National Science Council of Republic of China (Taiwan) through Grant NSC 102-2221-E-009-051-MY3. Experimental assistances by Mr. Chia-Wei Hong are also acknowledged.

References

  1. Afkhami S, Tyler AJ, Renardy Y, Renardy MR, St. Pierre TG, Woodward RC, Riffle JS (2010) Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J Fluid Mech 663:358CrossRefzbMATHMathSciNetGoogle Scholar
  2. Ando B, Ascia A, Baglio S, Beninato A (2009a) The ‘‘one drop’’ ferrofluidic pump with analog control. Sens Actuators A Phys 156(1):251–256CrossRefGoogle Scholar
  3. Ando B, Asciam A, Baglio S, Pitrone N (2009b) Ferrofluidic pumps: a valuable implementation without moving parts. IEEE Trans Instrum Meas 58(9):3232–3237CrossRefGoogle Scholar
  4. Bacri JC, Salin D (1982) Instability of ferrofluid magnetic drops under magnetic field. J Phys Lett 43:L649–L654CrossRefGoogle Scholar
  5. Bacri JC, Cebers A, Perzynski P (1994) Behaviour of magnetic fluid microdrop in a rotating magnetic field. Phys Rev Lett 72:270CrossRefGoogle Scholar
  6. Banerjee U, Bit P, Ganguly R, Hardt S (2012) Aggregation dynamics of particles in a microchannel due to an applied magnetic field. Microfluid Nanofluid 13:565–577CrossRefGoogle Scholar
  7. Biswal S, Gast A (2004) Rotational dynamics of semiflexible paramagnetic particle chains. Phys Rev E 69:041406CrossRefGoogle Scholar
  8. Bormashenko E, Pogreb R, Bormashenko Y, Musin A, Stein T (2008) New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces. Langmuir 24(21):12119–12122CrossRefGoogle Scholar
  9. Cebers A (2002) Dynamics of an elongated magnetic droplet in a rotating field. Phys Rev E 66:061402CrossRefGoogle Scholar
  10. Cebers A, Ozols M (2006) Dynamics of an active magnetic particle in a rotating magnetic field. Phys Rev E 73:021505CrossRefGoogle Scholar
  11. Chen CY, Cheng ZY (2008) An experimental study on Rosensweig instability of a ferrofluid droplet. Phys Fluids 20:054105CrossRefGoogle Scholar
  12. Chen CY, Li CS (2010) Ordered microdroplet formations of thin ferrofluid layer breakups. Phys Fluids 22:014105CrossRefGoogle Scholar
  13. Chen CY, Tsai WK, Miranda JA (2008) Hybrid ferrohydrodynamic instability: coexisting peak and labyrinthine patterns. Phys Rev E 77:056306CrossRefGoogle Scholar
  14. Chen CY, Chen C, Lee WH (2009a) Experiments on breakups of a magnetic fluid drop through a micro-orifice. J Magn Magn Mater 321(20):3520–3525CrossRefGoogle Scholar
  15. Chen CY, Yang YS, Miranda JA (2009b) Miscible ferrofluid patterns in a radial magnetic field. Phys Rev E 80:016314CrossRefGoogle Scholar
  16. Chen CY, Wu WL, Miranda JA (2010) Magnetically induced spreading and pattern selection in thin ferrofluid drops. Phys Rev E 82:056321CrossRefGoogle Scholar
  17. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437:862CrossRefGoogle Scholar
  18. Flament C, Lacis S, Bacri JC, Cebers A, Neveu S, Perzynski R (1996) Measurements of ferrofluid surface tension in confined geometry. Phys Rev E 53(5):4801–4806CrossRefGoogle Scholar
  19. Gao Y, Hulsen M, Kang TG, den Toonder J (2012) Numerical and experimental study of a rotating magnetic particle chain in a viscous fluid. Phys Rev E 86:041503CrossRefGoogle Scholar
  20. Gao Y, Reenen A, Hulsen M, Jong A, Prins M, den Toonder J (2014) Chaotic fluid mixing by alternating microparticle topologies to enhance biochemical reactions. Microfluid Nanofluid 16:265CrossRefGoogle Scholar
  21. Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6):2243–2245CrossRefGoogle Scholar
  22. Kang TG, Hulsen M, Anderson P, den Toonder J, Meijer H (2007) Chaotic mixing induced by a magnetic chain in a rotating magnetic field. Phys Rev E 76:066303CrossRefGoogle Scholar
  23. Karle M, Wohrle J, Miwa J, Paust N, Roth G, Zengerle R, von Stetten F (2011) Controlled counter-flow motion of magnetic bead chains rolling along microchannels. Microfluid Nanofluid 10:935–939CrossRefGoogle Scholar
  24. Lacharme F, Vandevyver C, Gijs MAM (2009) Magnetic beads retention device for sandwich immunoassay comparison of off-chip and on-chip antibody incubation. Microfluid Nanofluid 7:479–487CrossRefGoogle Scholar
  25. Lebedev A, Engel A, Morozov K, Bauke H (2003) Ferrofluid drops in rotating magnetic fields. New J Phys 5:57CrossRefGoogle Scholar
  26. Lee CP, Yang ST, Wei ZH (2012a) Ordered magnetic microdroplets array on magnetic films. J Appl Phys 111:07B331Google Scholar
  27. Lee CP, Tsai HY, Lai MF (2012b) Field evolution of self-assembled lattice structures of ferrofluid microdroplets on magnetic disc arrays. Soft Matter 8:11537–11543CrossRefGoogle Scholar
  28. Li YH, Chen CY, Sheu ST, Pai JM (2012a) Dynamics of a microchain of superparamagnetic beads in an oscillating field. Microfluid Nanofluid 13:579–588CrossRefGoogle Scholar
  29. Li YH, Sheu ST, Pai JM, Chen CY (2012b) Manipulations of oscillating micro magnetic particle chains. J Appl Phys 111:07A924Google Scholar
  30. Li YH, Lin HC, Chen CY (2013a) Trajectory shift of magnetic microchains in an oscillating field. Microfluid Nanofluid 14:831–838CrossRefGoogle Scholar
  31. Li YH, Lin HC, Chen CY (2013b) Steering of magnetic micro-swimmers. IEEE Trans Magn 49(7):4120–4123CrossRefGoogle Scholar
  32. Lin HC, Li YH, Chen CY (2014) Structural instability of an oscillating superparamagnetic micro-bead chain. Microfluid Nanofluid 17:73–84CrossRefGoogle Scholar
  33. Liu KA, I L (2013) Bacterial turbulence reduction by passive magnetic particle chains. Phys Rev E 88:033004CrossRefGoogle Scholar
  34. Liu J, Tan SH, Yap YF, Ng MY, Nguyen NT (2011) Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid Nanofluid 11(2):177–187CrossRefGoogle Scholar
  35. Liu Z, Wu J, Zhen H, Hu X (2013) Numerical simulation on head-on binary collision of gel propellant droplets. Energies 6:204–219CrossRefGoogle Scholar
  36. Long Z, Shetty A, Solomon M, Larson R (2009) Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface. Lab Chip 9(11):1567–1575CrossRefGoogle Scholar
  37. Melle S, Martin J (2003) Chain model of a magnetorheological suspension in a rotating field. J Chem Phys 118(21):9875CrossRefGoogle Scholar
  38. Melle S, Calderon O, Rubio M, Fuller G (2003) Microstructure evolution in magnetorheological suspensions governed by Mason number. Phys Rev E 68:041503Google Scholar
  39. Melle S, Calderon O, Fuller G, Rubio M (2002a) Polarizable particle aggregation under rotating magnetic fields using scattering dichroism. J Colloid Interface Sci 247:200CrossRefGoogle Scholar
  40. Melle S, Calderon O, Rubio M, Fuller G (2002b) Rotational dynamics in dipolar colloidal suspensions: video microscopy experiments and simulations results. J Nonnewton Fluid Mech 102(2):135–148CrossRefzbMATHGoogle Scholar
  41. Murshed S, Tan SH, Nguyen NT, Wong TN, Yobas L (2009) Microdroplet formation of water and nanofluids in heat-induced microfluidic t-junction. Micro Nanosyst 6(6):253–259Google Scholar
  42. Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12:1CrossRefGoogle Scholar
  43. Nguyen NT, Chai MF (2009) A stepper micropump for ferrofluid driven microfluidic systems. Micro Nanosyst 1(1):17–21CrossRefGoogle Scholar
  44. Nguyen NT, Zhu GP, Chua YC, Phan VN, Tan SH (2010) Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet. Langmuir 26(15):12553–12559CrossRefGoogle Scholar
  45. Pan KL, Law CK, Zhou B (2008) Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision. J Appl Phys 103:064901:1–064901:11Google Scholar
  46. Petousis I, Homburg E, Derks R, Dietzel A (2007) Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields. Lab Chip 7:1746CrossRefGoogle Scholar
  47. Qian J, Law CK (1997) Regimes of coalescence and separation in droplet collision. J Fluid Mech 331:59CrossRefGoogle Scholar
  48. Roy T, Sinha A, Chakraborty S, Ganguly R, Puri I (2009) Magnetic microsphere-based mixers for microdroplets. Phys Fluids 21:027101CrossRefGoogle Scholar
  49. Sun Y, Kwok YC, Foo-Peng Lee P, Nguyen NT (2009) Rapid amplification of genetically modified organisms using a circular ferrofluid-driven PCR microchip. Anal Bioanal Chem 394(5):1505–1508CrossRefGoogle Scholar
  50. Tan SH, Nguyen NT, Yobas L, Kang TG (2010) Formation and manipulation of ferrofluid droplets at a microfluidic t-junction. J Micromech Microeng 20(4):045004CrossRefGoogle Scholar
  51. Timonen J, Latikka M, Leibler L, Ras R, Ikkala O (2013) Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341(6143):253–257CrossRefGoogle Scholar
  52. Xue Y, Wang H, Zhao Y, Dai L, Feng L, Wang X, Lin T (2010) Magnetic liquid marbles: a ‘‘precise’’ miniature reactor. Adv Mater 22(43):1–5CrossRefGoogle Scholar
  53. Zhu GP, Nguyen NT, Ramanujan R, Huang XY (2011) Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir 27(24):14834–14841CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ching-Yao Chen
    • 1
    Email author
  • Hao-Chung Hsueh
    • 1
  • Sheng-Yan Wang
    • 1
  • Yan-Hom Li
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringNational Chiao Tung UniversityHsinchuTaiwan, ROC
  2. 2.Department of Mechatronics, Energy and Aerospace EngineeringNational Defense UniversityTaoyuanTaiwan, ROC

Personalised recommendations