Microfluidics and Nanofluidics

, Volume 18, Issue 5–6, pp 785–794 | Cite as

Ion transport and selection through DCGC-based electroosmosis in a conducting nanofluidic channel

  • Cunlu Zhao
  • Chun YangEmail author
Research Paper


Compared to conventional electroosmosis over a non-polarizable insulating surface with fixed surface charge (or zeta potential), induced-charge electroosmosis occurs over an electrically polarizable surface with the ability of surface charge modulation (both magnitude and sign) under externally applied electric fields. Here, for the first time we propose to extend the induced-charge electroosmosis to nanofluidic channels with conducting (ideally polarizable) walls. Furthermore, we present a numerical model to describe the electrokinetic transport in such conducting nanofluidic channels. The analysis of numerical results shows new applications of induced-charge electroosmosis for actively tunable ion selection and flexible flow control in nanofluidics. This is achieved through the direct contact gate control (DCGC) of surface charge in induced-charge electroosmosis by applying very low voltages directly on conducting walls of nanochannels.


Induced-charge electroosmosis Nanofluidic transport Ion selection Flow control 



This work was supported by the Ministry of Education of Singapore under Grant No. RG 93/14 to CY and ZCL would like to thank Nanyang Technological University for the Ph.D. research student scholarship.

Supplementary material

10404_2014_1471_MOESM1_ESM.docx (3.6 mb)
Supplementary material 1 (DOCX 3685 kb)


  1. Bazant MZ, Squires TM (2004) Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys Rev Lett 92(6):066101CrossRefGoogle Scholar
  2. Cheng L-J, Guo LJ (2007) Rectified Ion transport through concentration gradient in homogeneous silica nanochannels. Nano Lett 7(10):3165–3171CrossRefGoogle Scholar
  3. Cheng L-J, Guo LJ (2009) Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices. ACS Nano 3(3):575–584CrossRefGoogle Scholar
  4. Cheng L-J, Guo LJ (2010a) Entrance effect on ion transport in nanochannels. Microfluid Nanofluid 9(6):1033–1039CrossRefGoogle Scholar
  5. Cheng L-J, Guo LJ (2010b) Nanofluidic diodes. Chem Soc Rev 39(3):923–938CrossRefGoogle Scholar
  6. Daiguji H, Yang P, Majumdar A (2003) Ion transport in nanofluidic channels. Nano Lett 4(1):137–142CrossRefGoogle Scholar
  7. Daiguji H, Oka Y, Shirono K (2005) Nanofluidic diode and bipolar transistor. Nano Lett 5(11):2274–2280CrossRefGoogle Scholar
  8. Duan C, Majumdar A (2010) Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat Nanotechnol 5(12):848–852CrossRefGoogle Scholar
  9. Evtukh A, Litovchenko V, Semenenko M, Yilmazoglu O, Mutamba K, Hartnagel HL, Pavlidis D (2006) Formation of conducting nanochannels in diamond-like carbon films. Semicond Sci Technol 21(9):1326–1330CrossRefGoogle Scholar
  10. Fan R, Huh S, Yan R, Arnold J, Yang P (2008) Gated proton transport in aligned mesoporous silica films. Nat Mater 7(4):303–307CrossRefGoogle Scholar
  11. Ghowsi K, Gale RJ (1991) Field effect electroosmosis. J Chromatogr A 559(1–2):95–101CrossRefGoogle Scholar
  12. Guan W, Fan R, Reed MA (2011) Field-effect reconfigurable nanofluidic ionic diodes. Nat Commun 2:506CrossRefGoogle Scholar
  13. He Y, Tsutsui M, Fan C, Taniguchi M, Kawai T (2011) Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano 5(7):5509–5518CrossRefGoogle Scholar
  14. Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5(5):943–948CrossRefGoogle Scholar
  15. Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88(12):123114CrossRefGoogle Scholar
  16. Kovarik ML, Jacobson SC (2009) Nanofluidics in lab-on-a-chip devices. Anal Chem 81(17):7133–7140CrossRefGoogle Scholar
  17. Mao P, Han J (2005) Fabrication and characterization of 20 nm planar nanofluidic channels by glass–glass and glass-silicon bonding. Lab Chip 5(8):837–844CrossRefGoogle Scholar
  18. Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley-Interscience, HobokenCrossRefGoogle Scholar
  19. Mruetusatorn P, Mahfouz MR, Wu J (2009) Low-voltage dynamic control for DC electroosmotic devices. Sens Actuators, A 153(2):237–243CrossRefGoogle Scholar
  20. Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268(5211):700–705CrossRefGoogle Scholar
  21. Pardon G, van der Wijngaart W (2013) Modeling and simulation of electrostatically gated nanochannels. Adv Colloid Interface Sci 199–200:78–94CrossRefGoogle Scholar
  22. Piruska A, Branagan S, Cropek DM, Sweedler JV, Bohn PW (2008) Electrokinetically driven fluidic transport in integrated three-dimensional microfluidic devices incorporating gold-coated nanocapillary array membranes. Lab Chip 8(10):1625–1631CrossRefGoogle Scholar
  23. Piruska A, Branagan SP, Minnis AB, Wang Z, Cropek DM, Sweedler JV, Bohn PW (2010) Electrokinetic control of fluid transport in gold-coated nanocapillary array membranes in hybrid nanofluidic-microfluidic devices. Lab Chip 10(10):1237–1244CrossRefGoogle Scholar
  24. Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5(6):1147–1155CrossRefGoogle Scholar
  25. Plecis A, Tazid J, Pallandre A, Martinhon P, Deslouis C, Chen Y, Haghiri-Gosnet AM (2010) Flow field effect transistors with polarisable interface for EOF tunable microfluidic separation devices. Lab Chip 10:1245–1253CrossRefGoogle Scholar
  26. Schasfoort RBM, Schlautmann S, Hendrikse J, van den Berg A (1999) Field-effect flow control for microfabricated fluidic networks. Science 286(5441):942–945CrossRefGoogle Scholar
  27. Schoch RB, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80(3):839–883CrossRefGoogle Scholar
  28. Siwy Z, Fuliński A (2004) A nanodevice for rectification and pumping ions. Am J Phys 72(5):567–574CrossRefGoogle Scholar
  29. Sniadecki NJ, Lee CS, Sivanesan P, DeVoe DL (2004) Induced Pressure Pumping in polymer microchannels via field-effect flow control. Anal Chem 76(7):1942–1947CrossRefGoogle Scholar
  30. Sparreboom W, van den Berg A, Eijkel JCT (2009) Principles and applications of nanofluidic transport. Nat Nanotechnol 4(11):713–720CrossRefGoogle Scholar
  31. Squires TM, Bazant MZ (2004) Induced-charge electro-osmosis. J Fluid Mech 509:217–252CrossRefzbMATHMathSciNetGoogle Scholar
  32. Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93(3):035901CrossRefGoogle Scholar
  33. Van Der Wouden EJ, Hermes DC, Gardeniers JGE, Van Den Berg A (2006) Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields. Lab Chip 6(10):1300–1305CrossRefGoogle Scholar
  34. Vlassiouk I, Smirnov S, Siwy Z (2008a) Ionic selectivity of single nanochannels. Nano Lett 8(7):1978–1985CrossRefGoogle Scholar
  35. Vlassiouk I, Smirnov S, Siwy Z (2008b) Nanofluidic ionic diodes. Comparison of analytical and numerical solutions. ACS Nano 2(8):1589–1602CrossRefGoogle Scholar
  36. Wei C, Bard AJ, Feldberg SW (1997) Current rectification at quartz nanopipet electrodes. Anal Chem 69(22):4627–4633CrossRefGoogle Scholar
  37. Yan R, Liang W, Fan R, Yang P (2009) Nanofluidic diodes based on nanotube heterojunctions. Nano Lett 9(11):3820–3825CrossRefGoogle Scholar
  38. Yeh L-H, Xue S, Joo SW, Qian S, Hsu J-P (2012) Field effect control of surface charge property and electroosmotic flow in nanofluidics. J Phys Chem C 116(6):4209–4216CrossRefGoogle Scholar
  39. Yusko EC, An R, Mayer M (2009) Electroosmotic flow can generate ion current rectification in nano- and micropores. ACS Nano 4(1):477–487CrossRefGoogle Scholar
  40. Zhang B, Ai Y, Liu J, Joo SW, Qian S (2011) Polarization effect of a dielectric membrane on the ionic current rectification in a conical nanopore. J Phys Chem C 115(50):24951–24959CrossRefGoogle Scholar
  41. Zhao C, Yang C (2012) Advances in electrokinetics and their applications in micro/nano fluidics. Microfluid Nanofluid 13(2):179–203CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeRepublic of Singapore

Personalised recommendations