Skip to main content
Log in

Fluid dynamics of the droplet impact processes in cell printing

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Cell printing, in which cell-laden droplets are delivered to target positions using inkjets or other devices, is an emerging technique in tissue engineering. Despite significant progress, the survival rate of cells delivered to these positions is often inadequate for targeted applications. Here, we developed a simple model for cell printing based on multiphase fluid–structure interactions. Using this model, we reconstructed the droplet and cell dynamics during the droplet impact process in cell printing. Based on extensive simulations, we developed a general picture of the droplet impact process by dividing it into four stages: the inertia stage, the interfacial flow stage, the elastic response stage, and the viscous flow stage. We provided a simple estimation of the duration of each stage and the magnitude of stress within the cell during each stage. From that estimation, we determined that surface tension is essential for controlling the deformation and stress inside cell under low-to-moderate droplet impact velocities relevant to inkjet-based cell printing. Based on extensive parametric studies, strategies for controlling the stress and deformation of cells during cell printing are examined and their practical implementations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bagchi P (2007) Mesoscale simulation of blood flow in small vessels. Biophys J 92(6):1858–1877

    Article  Google Scholar 

  • Barron JA, Krizman DB, Ringeisen BR (2005) Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng 33(2):121–130

    Article  Google Scholar 

  • Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR (2003) Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anatomical Record Part A Discov Mol Cell Evol Biol 272A(2):497–502

    Article  Google Scholar 

  • Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917

    Article  Google Scholar 

  • Boland T, Tao X, Damon BJ, Manley B, Kesari P, Jalota S et al (2007) Drop-on-demand printing of cells and materials for designer tissue constructs. Mater Sci Eng C-Biomim Supramol Syst 27(3):372–376

    Article  Google Scholar 

  • Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface-tension. J Comput Phys 100(2):335–354

    Article  MATH  MathSciNet  Google Scholar 

  • Calvert P (2007) Printing cells. Science 318(5848):208–209

    Article  Google Scholar 

  • Chen LQ, Li ZG (2010) Bouncing droplets on nonsuperhydrophobic surfaces. Phys Rev E 82(1):016308

    Article  Google Scholar 

  • Chen LQ, Xiao ZY, Chan PCH, Lee YK, Li ZG (2011) A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf. Appl Surf Sci 257(21):8857–8863

    Article  Google Scholar 

  • Chu KT, Prodanovic M (2013). LSMLIB package. http://ktchu.serendipityresearch.org/software/lsmlib

  • Colella P (1985) A direct Eulerian muscl scheme for gas-dynamics. SIAM J Sci Stat Comput 6(1):104–117

    Article  MATH  MathSciNet  Google Scholar 

  • Collinsworth AM, Zhang S, Kraus WE, Truskey GA (2002) Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. Am J Physiol Cell Physiol 283(4):C1219–C1227

    Article  Google Scholar 

  • Costa KD, Sim AJ, Yin FCP (2006) Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. J Biomech Eng Trans ASME 128(2):176–184

    Article  Google Scholar 

  • Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30(31):6221–6227

    Article  Google Scholar 

  • Doddi SK, Bagchi P (2009) Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys Rev E 79(4):046318

    Article  Google Scholar 

  • Ferris CJ, Gilmore KG, Wallace GG, Panhuis MIH (2013) Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol 97(10):4243–4258

    Article  Google Scholar 

  • Gross A, Schoendube J, Niekrawitz S, Streule W, Riegger L, Zengerle R et al (2013) Single-cell printer: automated, on demand, and label free. J Lab Autom 18(6):504–518

    Article  Google Scholar 

  • He P (2011) Fluid dynamics of cell printing, Ph.D. dissertation, Clemson University

  • He P, Qiao R (2011) A full-Eulerian solid level set method for simulation of fluid-structure interactions. Microfluid Nanofluid 11(5):557–567

    Article  Google Scholar 

  • Hsu SH, Strohl KP, Jamieson AM (1994) Role of viscoelasticity in tube model of airway reopening. 1. Nonnewtonian sols. J Appl Physiol 76(6):2481–2489

    Google Scholar 

  • Jakab K, Neagu A, Mironov V, Forgacs G (2004) Organ printing: fiction or science. Biorheology 41(3–4):371–375

    Google Scholar 

  • Jiang GS, Peng DP (2000) Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J Sci Comput 21(6):2126–2143

    Article  MATH  MathSciNet  Google Scholar 

  • Kamgoue A, Ohayon J, Tracqui P (2007) Estimation of cell young’s modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion. J Biomech Eng Trans ASME 129(4):523–530

    Article  Google Scholar 

  • Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI (2007) Atomic force microscopy probing of cell elasticity. Micron 38(8):824–833

    Article  Google Scholar 

  • Lanero T, Cavalleri O, Krol S, Rolandi R, Gliozzi A (2006) Mechanical properties of single living cells encapsulated in polyelectrolyte matrixes. J Biotechnol 124(4):723–731

    Article  Google Scholar 

  • Li Y, Cheng RS (2006) Viscometric study of gelatin in dilute aqueous solutions. J Polymer Sci Part B Polym Phys 44(13):1804–1812

    Article  Google Scholar 

  • Li Y, Gregory S (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim Cosmochim Acta 38:703–714

    Article  Google Scholar 

  • Li H, Ye T, Lam KY (2011) Qualitative and quantitative analysis of dynamic deformation of a cell in nonuniform alternating electric field. J Appl Phys 110(10):104701

    Article  Google Scholar 

  • Liberski AR, Delaney JT Jr, Schubert US (2011) “One cell-one well”: a new approach to inkjet printing single cell microarrays. ACS Comb Sci 13(2):190–195

    Article  Google Scholar 

  • Lim CT, Zhou EH, Quek ST (2006) Mechanical models for living cells—a review. J Biomech 39(2):195–216

    Article  Google Scholar 

  • Lin LAG, Liu AQ, Yu YF, Zhang C, Lim CS, Ng SH et al (2008) Cell compressibility studies utilizing noncontact hydrostatic pressure measurements on single living cells in a microchamber. Appl Phys Lett 92:233901

    Article  Google Scholar 

  • Luo ZY, Wang SQ, He L, Xu F, Bai BF (2013) Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow. Soft Matter 9:9651–9660

    Article  Google Scholar 

  • Mathur AB, Collinsworth AM, Reichert WM, Kraus WE, Truskey GA (2001) Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 34(12):1545–1553

    Article  Google Scholar 

  • Matsumoto T, Abe H, Ohashi T, Kato Y, Sato M (2002) Local elastic modulus of atherosclerotic lesions of rabbit thoracic aortas measured by pipette aspiration method. Physiol Meas 23(4):635–648

    Article  Google Scholar 

  • Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161

    Article  Google Scholar 

  • Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K et al (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11(11–12):1658–1666

    Article  Google Scholar 

  • Nestler FHM, Hvidt S, Ferry JD, Veis A (1983) Flexibility of collagen determined from dilute-solution viscoelastic measurements. Biopolymers 22(7):1747–1758

    Article  Google Scholar 

  • Ofori-Kwakye K, Martin GP (2005) Viscoelastic characterisation of calcium alginate gels intended for wound healing. J Sci Technol 25:46–52

    Google Scholar 

  • Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer, New York

    Google Scholar 

  • Pan KL, Law CK (2007) Dynamics of droplet-film collision. J Fluid Mech 587:1–22

    Article  MATH  MathSciNet  Google Scholar 

  • Parsa S, Gupta M, Loizeau F, Cheung KC (2010) Effects of surfactant and gentle agitation on inkjet dispensing of living cells. Biofabrication 2(2):025003

    Article  Google Scholar 

  • Pasko A, Adzhiev V, Sourin A, Savchenko V (1995) Function representation in geometric modeling: concepts, implementation and applications. Vis Comput 11(8):429–446

    Article  Google Scholar 

  • Reasor D Jr, Mehrabadi M, Ku D, Aidun C (2013) Determination of critical parameters in platelet margination. Ann Biomed Eng 41(2):238–249

    Article  Google Scholar 

  • Ribeiro ACF, Sobral A, Simoes SMN, Barros MCF, Lobo VMM, Cabral A et al (2011) Transport properties of aqueous solutions of sodium alginate at 298.15 K. Food Chem 125(4):1213–1218

    Article  Google Scholar 

  • Ringeisen BR, Othon CM, Barron JA, Young D, Spargo BJ (2006) Jet-based methods to print living cells. Biotechnol J 1(9):930–948

    Article  Google Scholar 

  • Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T (2004) Inkjet printing for high-throughput cell patterning. Biomaterials 25(17):3707–3715

    Article  Google Scholar 

  • Saunders R, Gough J, Derby B (2005) Ink jet printing of mammalian primary cells for tissue engineering applications. Mater Res Soc Symp Proc 845:57–62

    Google Scholar 

  • Saunders R, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29(2):193–203

    Article  Google Scholar 

  • Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, Cambridge

  • Shu CW, Osher S (1988) Efficient implementation of essentially non-oscillatory shock-capturing schemes. J Comput Phys 77(2):439–471

    Article  MATH  MathSciNet  Google Scholar 

  • Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible 2-phase flow. J Comput Phys 114(1):146–159

    Article  MATH  Google Scholar 

  • Tanaka Y, Yamazaki Y, Okumura K (2003) Bouncing gel balls: impact of soft gels onto rigid surface. Europhys Lett 63(1):146–152

    Article  Google Scholar 

  • Tasoglu S, Kaynak G, Szeri AJ, Demirci U, Muradoglu M (2010) Impact of a compound droplet on a flat surface: a model for single cell epitaxy. Phys Fluids 22(8):082103

    Article  Google Scholar 

  • Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W et al (2001) A front-tracking method for the computations of multiphase flow. J Comput Phys 169(2):708–759

    Article  MATH  Google Scholar 

  • Varghese D, Deshpande M, Xu T, Kesari P, Ohri S, Boland T (2005) Advances in tissue engineering: cell printing. J Thorac Cardiovasc Surg 129(2):470–472

    Article  Google Scholar 

  • Villar G, Graham AD, Bayley H (2013) A tissue-like printed material. Science 340(6128):48–52

    Article  Google Scholar 

  • Wang W, Huang Y, Grujicic M, Chrisey DB (2008) Study of impact-induced mechanical effects in cell direct writing using smooth particle hydrodynamic method. J Manuf Sci Eng Trans ASME 130(2):021012

    Article  Google Scholar 

  • Winterhalter M (2000) Black lipid membranes. Curr Opin Colloid Interface Sci 5(3–4):250–255

    Article  Google Scholar 

  • Withers GS (2006) New ways to print living cells promise breakthroughs for engineering complex tissues in vitro. Biochem J 394:e1–e2

    Article  Google Scholar 

  • Xu T, Petridou S, Lee EH, Roth EA, Vyavahare NR, Hickman JJ et al (2004) Construction of high-density bacterial colony arrays and patterns by the ink-jet method. Biotechnol Bioeng 85(1):29–33

    Article  Google Scholar 

  • Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93–99

    Article  Google Scholar 

  • Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588

    Google Scholar 

  • Xu T, Olson J, Zhao WX, Atala A, Zhu JM, Yoo JJ (2008) Characterization of cell constructs generated with inkjet printing technology using in vivo magnetic resonance imaging. J Manuf Sci Eng Trans ASME 130(2):021013

    Article  Google Scholar 

  • Xu T, Rohozinski J, Zhao W, Moorefield EC, Atala A, Yoo JJ (2009) Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng Part A 15(1):95–101

    Article  Google Scholar 

  • Xu CX, Chai WX, Huang Y, Markwald RR (2012) Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol Bioeng 109(12):3152–3160

    Article  Google Scholar 

  • Yamaguchi S, Ueno A, Akiyama Y, Morishima K (2012) Cell patterning through inkjet printing of one cell per droplet. Biofabrication 4(4):045005

    Article  Google Scholar 

  • Ye Z (2000) On the low frequency elastic response of a spherical particle. Chinese J Phys 38(2):103–110

    Google Scholar 

  • Ye T, Li H, Lam KY (2011) Numerical design of microfluidic-microelectric hybrid chip for the separation of biological cells. Langmuir 27(6):3188–3197

    Article  Google Scholar 

  • Yeung A, Evans E (1989) Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys J 56(1):139–149

    Article  Google Scholar 

  • Youn S, Lee DW, Cho YH (2008) Cell-deformability-monitoring chips based on strain-dependent cell-lysis rates. J Microelectromech Syst 17(2):302–308

    Article  Google Scholar 

  • Zang Y, Street RL, Koseff JR (1994) A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates. J Comput Phys 114(1):18–33

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao H, Freund JB, Moser RD (2008) A fixed-mesh method for incompressible flow-structure systems with finite solid deformations. J Comput Phys 227(6):3114–3140

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. 1. The recovery technique. Int J Numer Meth Eng 33(7):1331–1364

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

All authors gratefully acknowledge support from NSF under Grant No. CBET-0936235. P.H. was also partially supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20130597), the Specialized Research Funds for Doctoral Program of Higher Education of China (Grant No. 20130092120021), and the Fundamental Research Funds for the Central Universities (Grant No. 22420135013). The authors thank the Clemson-CCIT office for allocation of computer time on the Palmetto cluster and Godfrey Kimball for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Qiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, P., Liu, Y. & Qiao, R. Fluid dynamics of the droplet impact processes in cell printing. Microfluid Nanofluid 18, 569–585 (2015). https://doi.org/10.1007/s10404-014-1470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1470-3

Keywords

Navigation