Microfluidics and Nanofluidics

, Volume 18, Issue 2, pp 199–214 | Cite as

Development of a low-volume, highly sensitive microimmunoassay using computational fluid dynamics-driven multiobjective optimization

  • Mehdi Ghodbane
  • Anthony Kulesa
  • Henry H. Yu
  • Tim J. Maguire
  • Rene S. Schloss
  • Rohit Ramachandran
  • Jeffrey D. Zahn
  • Martin L. YarmushEmail author
Research Paper


Immunoassays are one of the most versatile and widely performed biochemical assays and, given their selectivity and specificity, are used in both clinical and research settings. However, the high cost of reagents and relatively large sample volumes constrain the integration of immunoassays into many applications. Scaling the assay down within microfluidic devices can alleviate issues associated with reagent and sample consumption. However, in many cases, a new device is designed and empirically optimized for each specific analyte, a costly and time-consuming approach. In this paper, we report the development of a microfluidic bead-based immunoassay that, using antibody-coated microbeads, can potentially detect any analyte or combination of analytes for which antibody-coated microbeads can be generated. We also developed a computational reaction model and optimization algorithm that can be used to optimize the device for any analyte. We applied this technique to develop a low-volume IL-6 immunoassay with high sensitivity (358 fM, 10 pg/mL) and a large dynamic range (four orders of magnitude). This device design and optimization technique can be used to design assays for any protein with an available antibody and can be used with a large number of applications including biomarker discovery, temporal in vitro studies using a reduced number of cells and reagents, and analysis of scarce biological samples in animal studies and clinical research settings.


Immunoassay Microfluidic Computational fluid dynamics Multiobjective optimization 



This work was partially funded by the National Institute of Health Grants P41EB002503 and UH2TR000503, the National Institute of Health Rutgers Biotechnology Training Program (T32GM008339), and the National Science Foundation Integrated Science and Engineering of Stem Cells Program (DGE0801620). The authors would like to thank Dr. Sara Salahi, Dr. Kellie Anderson, and Anwesha Chaudhury for productive conversations regarding computational and optimization issues, Dana Barrasso for guidance pertaining to statistical analysis, Dr. Bhaskar Mitra for support in developing the fabrication protocols, and modeFrontier customer support for extensive troubleshooting of the optimization platform.


  1. Andersson H, van der Wijngaart W, Stemme G (2001) Micromachined filter-chamber array with passive valves for biochemical assays on beads. Electrophoresis 22(2):249–257CrossRefGoogle Scholar
  2. ANSYS (2010) Fluent 13.0-user manualGoogle Scholar
  3. Bange A, Halsall H, Heineman W (2005) Microfluidic immunosensor systems. Biosens Bioelectron 20(12):2488–2503. doi: 10.1016/j.bios.2004.10.016 CrossRefGoogle Scholar
  4. BD (2010) BD FACSCalibur flow cytometry system technical specifications. BD Biosciences.
  5. Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4(1):261–286. doi: 10.1146/annurev.bioeng.4.112601.125916 CrossRefGoogle Scholar
  6. Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005) Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14(3):590–597CrossRefGoogle Scholar
  7. Bird RB, Stewart WE, Lightfoot EN (2006) Transport phenomena. Wiley, LondonGoogle Scholar
  8. Boi C, Dimartino S, Sarti GC (2007) Modelling and simulation of affinity membrane adsorption. J Chromatogr A 1162(1):24–33CrossRefGoogle Scholar
  9. Chan-Park MB, Zhang J, Yan Y, Yue C (2004) Fabrication of large SU-8 mold with high aspect ratio microchannels by UV exposure dose reduction. Sens Actuators B Chem 101(1):175–182CrossRefGoogle Scholar
  10. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  11. Derveaux S, Stubbe BG, Braeckmans K, Roelant C, Sato K, Demeester J, Smedt SC (2008) Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient. Anal Bioanal Chem 391(7):2453–2467. doi: 10.1007/s00216-008-2062-4 CrossRefGoogle Scholar
  12. Desai SP, Freeman DM, Voldman J (2009) Plastic masters—rigid templates for soft lithography. Lab Chip 9(11):1631–1637CrossRefGoogle Scholar
  13. Diercks A, Ozinsky A, Hansen C, Spotts J, Rodriguez D, Aderem A (2009) A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal Biochem 386(1):30–35. doi: 10.1016/j.ab.2008.12.012 CrossRefGoogle Scholar
  14. Dimartino S, Boi C, Sarti GC (2011) A validated model for the simulation of protein purification through affinity membrane chromatography. J Chromatogr A 1218(13):1677–1690CrossRefGoogle Scholar
  15. Dullien FA (1991) Porous media: fluid transport and pore structure. Elsevier, AmsterdamGoogle Scholar
  16. ESTECO (2013) modeFRONTIER 4 user manualGoogle Scholar
  17. Fogler HS (1999) Elements of chemical reaction engineering, 3rd edn. Prentice Hall PTR, Upper Saddle River, New JerseyGoogle Scholar
  18. Fordyce PM, Diaz-Botia C, DeRisi JL, Gomez-Sjoberg R (2012) Systematic characterization of feature dimensions and closing pressures for microfluidic valves produced via photoresist reflow. Lab Chip 12:4287–4295Google Scholar
  19. Froment GF, Bischoff KB, De Wilde J (1990) Chemical reactor analysis and design, vol 2. Wiley, New YorkGoogle Scholar
  20. Haynes WM, Lide DR, Bruno TJ (2012) CRC handbook of chemistry and physics 2012–2013. CRC Press, Boca RatonGoogle Scholar
  21. He L, Niemeyer B (2003) A novel correlation for protein diffusion coefficients based on molecular weight and radius of gyration. Biotechnol Prog 19(2):544–548CrossRefGoogle Scholar
  22. He H, Yuan Y, Wang W, Chiou N-R, Epstein AJ, Lee LJ (2009) Design and testing of a microfluidic biochip for cytokine enzyme-linked immunosorbent assay. Biomicrofluidics 3(2):022401. doi: 10.1063/1.3116665 CrossRefGoogle Scholar
  23. Henares TG, Mizutani F, Hisamoto H (2008) Current development in microfluidic immunosensing chip. Anal Chim Acta 611(1):17–30. doi: 10.1016/j.aca.2008.01.064 CrossRefGoogle Scholar
  24. Houser B (2012) Bio-Rad’s Bio-Plex(R) suspension array system, xMAP technology overview. Arch Physiol Biochem 118(4):192–196. doi: 10.3109/13813455.2012.705301 CrossRefGoogle Scholar
  25. Kong J, Jiang L, Su X, Qin J, Du Y, Lin B (2009) Integrated microfluidic immunoassay for the rapid determination of clenbuterol. Lab Chip 9(11):1541–1547CrossRefGoogle Scholar
  26. Konry T, Smolina I, Yarmush JM, Irimia D, Yarmush ML (2011) Ultrasensitive detection of low-abundance surface-marker protein using isothermal rolling circle amplification in a microfluidic nanoliter platform. Small 7(3):395–400CrossRefGoogle Scholar
  27. Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2(12):910–919CrossRefGoogle Scholar
  28. Lionello A, Josserand J, Jensen H, Girault HH (2005a) Dynamic protein adsorption in microchannels by “stop-flow” and continuous flow. Lab Chip 5(10):1096–1103CrossRefGoogle Scholar
  29. Lionello A, Josserand J, Jensen H, Girault HH (2005b) Protein adsorption in static microsystems: effect of the surface to volume ratio. Lab Chip 5(3):254–260CrossRefGoogle Scholar
  30. Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC Press, Boca RatonGoogle Scholar
  31. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446CrossRefGoogle Scholar
  32. Montgomery D (2009) Design and analysis of experiments, 7th edn. Wiley, New YorkGoogle Scholar
  33. Ng AHC, Uddayasankar U, Wheeler AR (2010) Immunoassays in microfluidic systems. Anal Bioanal Chem 397(3):991–1007. doi: 10.1007/s00216-010-3678-8 CrossRefGoogle Scholar
  34. Phillips TM (2004) Rapid analysis of inflammatory cytokines in cerebrospinal fluid using chip-based immunoaffinity electrophoresis. Electrophoresis 25(1011):1652–1659. doi: 10.1002/elps.200305873 CrossRefGoogle Scholar
  35. Piran U, Riordan WJ (1990) Dissociation rate constant of the biotin–streptavidin complex. J Immunol Methods 133(1):141–143CrossRefGoogle Scholar
  36. Sasso LA, Undar A, Zahn JD (2010) Autonomous magnetically actuated continuous flow microimmunofluorocytometry assay. Microfluid Nanofluid 9(2–3):253–265. doi: 10.1007/s10404-009-0543-1 CrossRefGoogle Scholar
  37. Sasso LA, Johnston IH, Zheng M, Gupte RK, Ündar A, Zahn JD (2012) Automated microfluidic processing platform for multiplexed magnetic bead immunoassays. Microfluid Nanofluid 13(4):603–612CrossRefGoogle Scholar
  38. Sato K, Tokeshi M, Odake T, Kimura H, Ooi T, Nakao M, Kitamori T (2000) Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip. Anal Chem 72(6):1144–1147CrossRefGoogle Scholar
  39. Sato K, Yamanaka M, Takahashi H, Tokeshi M, Kimura H, Kitamori T (2002) Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-γ. Electrophoresis 23(5):734–739CrossRefGoogle Scholar
  40. Schneider F, Draheim J, Kamberger R, Wallrabe U (2009) Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS. Sens Actuators A 151(2):95–99. doi: 10.1016/j.sna.2009.01.026 CrossRefGoogle Scholar
  41. Seong GH, Crooks RM (2002) Efficient mixing and reactions within microfluidic channels using microbead-supported catalysts. J Am Chem Soc 124(45):13360–13361CrossRefGoogle Scholar
  42. Shapiro JS, Stiteler M, Wu G, Price EA, Simon AJ, Sankaranarayanan S (2011) Cisterna magna cannulated repeated CSF sampling rat model-effects of a gamma-secretase inhibitor on Aβ levels. J Neurosci Methods 205:36–44Google Scholar
  43. Shin KS, Lee SW, Han KC, Kim SK, Yang EK, Park JH, Ju BK, Kang JY, Kim TS (2007) Amplification of fluorescence with packed beads to enhance the sensitivity of miniaturized detection in microfluidic chip. Biosens Bioelectron 22(9):2261–2267CrossRefGoogle Scholar
  44. Shoemaker LD, Achrol AS, Sethu P, Steinberg GK, Chang SD (2012) Clinical neuroproteomics and biomarkers: from basic research to clinical decision making. Neurosurgery 70(3):518CrossRefGoogle Scholar
  45. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977CrossRefGoogle Scholar
  46. Stammers AT, Liu J, Kwon BK (2012) Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. J Neurosci Res 90(4):782–790. doi: 10.1002/jnr.22820 CrossRefGoogle Scholar
  47. Toumpanakis D, Theodoros V (2007) Molecular mechanisms of action of Interleukin-6 (IL-6). Pneumon 20:154–167Google Scholar
  48. Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116. doi: 10.1126/science.288.5463.113 CrossRefGoogle Scholar
  49. Wild D (2005) The immunoassay handbook. Elsevier Ltd., San DiegoGoogle Scholar
  50. Wilkes JO (2006) Fluid mechanics for chemical engineers. Prentice Hall PTR, Upper Saddle RiverGoogle Scholar
  51. Wilson R, Cossins AR, Spiller DG (2006) Encoded microcarriers for high-throughput multiplexed detection. Angew Chem Int Edit 45(37):6104–6117. doi: 10.1002/anie.200600288 CrossRefGoogle Scholar
  52. Winz R, de los Rıos Gonzalez A, von Lieres E, Schmittel M, Wiechert W (2007) Simulation of a micro-analytical device for adsorbing substances from a fluid. In: Proceedings of the European Comsol conference, Grenoble, 2007, pp 736–741Google Scholar
  53. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRefGoogle Scholar
  54. Yoo SK, Kim YM, Yoon SY, Kwon H-S, Lee JH, Yang S (2011) Bead packing and release using flexible polydimethylsiloxane membrane for semi-continuous biosensing. Artif Organs. doi: 10.1111/j.1525-1594.2011.01240.x Google Scholar
  55. Zimmermann M, Delamarche E, Wolf M, Hunziker P (2005) Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays. Biomed Microdevices 7(2):99–110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mehdi Ghodbane
    • 1
  • Anthony Kulesa
    • 1
  • Henry H. Yu
    • 1
  • Tim J. Maguire
    • 1
  • Rene S. Schloss
    • 1
  • Rohit Ramachandran
    • 2
  • Jeffrey D. Zahn
    • 1
  • Martin L. Yarmush
    • 1
    • 3
    Email author
  1. 1.Department of Biomedical EngineeringRutgers, The State University of New JerseyPiscatawayUSA
  2. 2.Department of Chemical and Biochemical EngineeringRutgers, The State University of New JerseyPiscatawayUSA
  3. 3.Center for Engineering in Medicine/Surgical ServicesMassachusetts General HospitalBostonUSA

Personalised recommendations