Skip to main content

Thermostat choice significantly influences water flow rates in molecular dynamics studies of carbon nanotubes

Abstract

Extremely rapid water flow through carbon nanotubes has been observed in both experiment and simulation which has led to the suggestion that this material be used in a number of filtration applications. However, there is significant disparity in the magnitude of water permeability and the degree of flow enhancement compared with conventional porous materials in the literature. Here, we show that one of the causes of the disparity in simulation data is the variety of methods used to control temperature in molecular simulations. Not only can the choice of thermostat alter the flow rate and permeability by as much as five times, but it can determine whether the transport is observed to be frictionless or not. In addition to helping explain the disparate simulation results on transport in nanomaterials, this work provides some guidelines to help designing and interpreting molecular simulations of mass transport.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Andersen HC (1980) Molecular-dynamics simulations at constant pressure and-or temperature. J Chem Phys 72:2384–2393

    Article  Google Scholar 

  • Basconi JE, Shirts MR (2013) Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J Chem Theory Comput 9:2887–2899

    Article  Google Scholar 

  • Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  Google Scholar 

  • Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608

    Article  Google Scholar 

  • Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B 112:1427–1434

    Article  Google Scholar 

  • Corry B (2011) Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energ Environ Sci 4:751–759

    Article  Google Scholar 

  • Gong XJ, Li JY, Zhang H, Wan RZ, Lu HJ, Wang S, Fang HP (2008) Enhancement of water permeation across a nanochannel by the structure outside the channel. Phys Rev Lett 101:257801

    Article  Google Scholar 

  • Gong XJ, Li JC, Xu K, Wang JF, Yang H (2010) A controllable molecular Sieve for Na+ and K+ ions. J Am Chem Soc 132:1873–1877

    Article  Google Scholar 

  • Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423–4435

    Article  Google Scholar 

  • Hilder TA, Gordon D, Chung SH (2009) Salt rejection and water transport through boron nitride nanotubes. Small 5:2183–2190

    Article  Google Scholar 

  • Hilder TA, Yang R, Ganesh V, Gordon D, Bliznyuk A, Rendell AP, Chung SH (2010) Validity of current force fields for simulations on boron nitride nanotubes. Micro Nano Lett 5:150–156

    Article  Google Scholar 

  • Holt JK, Park HG, Wang YM, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037

    Article  Google Scholar 

  • Hoover WG (1985) Canonical dynamics—equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  Google Scholar 

  • Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190

    Article  Google Scholar 

  • Hunenberger P (2005) Thermostat algorithms for molecular dynamics simulations. Adv Polym Sci 173:105–147

    Article  Google Scholar 

  • Joseph S, Aluru NR (2008) Why are carbon nanotubes fast transporters of water? Nano Lett 8:452–458

    Article  Google Scholar 

  • Kalra A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotube membranes. P Natl Acad Sci USA 100:10175–10180

    Article  Google Scholar 

  • Kannam SK, Todd BD, Hansen JS, Daivis PJ (2013) How fast does water flow in carbon nanotubes? J Chem Phys 138:094701

    Article  Google Scholar 

  • Khademi M, Sahimi M (2011) Molecular dynamics simulation of pressure-driven water flow in silicon-carbide nanotubes. J Chem Phys 135:204509

    Article  Google Scholar 

  • Koopman EA, Lowe CP (2006) Advantages of a Lowe–Andersen thermostat in molecular dynamics simulations. J Chem Phys 124:204103

    Article  Google Scholar 

  • Krishnan TVS, Babu JS, Sathian SP (2013) A molecular dynamics study on the effect of thermostat selection on the physical behaviour of water molecules inside single walled carbon nanotubes. J Mol Liq 188:42–48

    Article  Google Scholar 

  • Li PH, Lim XD, Zhu YW, Yu T, Ong CK, Shen ZX, Wee ATS, Sow CH (2007) Tailoring wettability change on aligned and patterned carbon nanotube films for selective assembly. J Phys Chem B 111:1672–1678

    Article  Google Scholar 

  • Liu HM, Murad S, Jameson CJ (2006) Ion permeation dynamics in carbon nanotubes. J Chem Phys 125:084713

    Article  Google Scholar 

  • Majumder M, Corry B (2011) Anomalous decline of water transport in covalently modified carbon nanotube membranes. Chem Commun 47:7683–7685

    Article  Google Scholar 

  • Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics: enhanced flow in carbon nanotubes (vol 438, p 44, 2005). Nature 438:930

    Article  Google Scholar 

  • Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954–9960

    Article  Google Scholar 

  • Nicholls WD, Borg MK, Lockerby DA, Reese JM (2012a) Water transport through (7,7) carbon nanotubes of different lengths using molecular dynamics. Microfluid Nanofluid 12:257–264

    Article  Google Scholar 

  • Nicholls WD, Borg MK, Lockerby DA, Reese JM (2012b) Water transport through carbon nanotubes with defects. Mol Simulat 38:781–785

    Article  Google Scholar 

  • Nose S (1984) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  • Peter C, Hummer G (2005) Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Biophys J 89:2222–2234

    Article  Google Scholar 

  • Ritos K, Mattia D, Calabro F, Reese JM (2014) Flow enhancement in nanotubes of different materials and lengths. J Chem Phys 140:014702

    Article  Google Scholar 

  • Rosta E, Buchete NV, Hummer G (2009) Thermostat artifacts in replica exchange molecular dynamics simulations. J Chem Theory Comput 5:1393–1399

    Article  Google Scholar 

  • Song C, Corry B (2009) Intrinsic ion selectivity of narrow hydrophobic pores. J Phys Chem B 113:7642–7649

    Article  Google Scholar 

  • Stoyanov SD, Groot RD (2005) From molecular dynamics to hydrodynamics: a novel Galilean invariant thermostat. J Chem Phys 122:114112

    Article  Google Scholar 

  • Su JY, Guo HX (2012) Effect of nanochannel dimension on the transport of water molecules. J Phys Chem B 116:5925–5932

    Article  Google Scholar 

  • Suk ME, Raghunathan AV, Aluru NR (2008) Fast reverse osmosis using boron nitride and carbon nanotubes. Appl Phys Lett 92:133120

    Article  Google Scholar 

  • Thomas JA, McGaughey AJH (2008) Reassessing fast water transport through carbon nanotubes. Nano Lett 8:2788–2793

    Article  Google Scholar 

  • Thomas JA, McGaughey AJH, Kuter-Arnebeck O (2010) Pressure-driven water flow through carbon nanotubes: insights from molecular dynamics simulation. Int J Therm Sci 49:281–289

    Article  Google Scholar 

  • Won CY, Aluru NR (2007) Water permeation through a subnanometer boron nitride nanotube. J Am Chem Soc 129:2748–2749

    Article  Google Scholar 

  • Won CY, Aluru NR (2008) Structure and dynamics of water confined in a boron nitride nanotube. J Phys Chem C 112:1812–1818

    Article  Google Scholar 

  • Won CY, Joseph S, Aluru NR (2006) Effect of quantum partial charges on the structure and dynamics of water in single-walled carbon nanotubes. J Chem Phys 125:114701

    Article  Google Scholar 

  • Zhu FQ, Schulten K (2003) Water and proton conduction through carbon nanotubes as models for biological channels. Biophys J 85:236–244

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Corry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 140 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomas, M., Corry, B. Thermostat choice significantly influences water flow rates in molecular dynamics studies of carbon nanotubes. Microfluid Nanofluid 18, 41–47 (2015). https://doi.org/10.1007/s10404-014-1406-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1406-y

Keywords

  • Water Flux
  • Dissipative Particle Dynamic
  • Random Force
  • Microcanonical Ensemble
  • Couple Motion