Advertisement

Microfluidics and Nanofluidics

, Volume 17, Issue 5, pp 879–890 | Cite as

Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel

  • Citsabehsan Devendran
  • Ian Gralinski
  • Adrian Neild
Research Paper

Abstract

In this study, a method to separate particles, within a small sample, based on size is demonstrated using ultrasonic actuation. This is achieved in a fluid, which has been deposited on a flat surface and is contained by a channel, such that it has a rectangular wetted area. The system utilises acoustic radiation forces (ARFs) and acoustic streaming. The force field generates two types of stable collection locations, a lower one within the liquid suspension medium and an upper one at the liquid–air interface. Acoustic streaming selectively delivers smaller particles from the lower locations to the upper ones. Experimental data demonstrate the ability to separate two sets of polystyrene microparticles, with diameters of 3 and 10 μm, into different stable locations. Methods to reduce migration of larger particles to the free surface are also investigated, thereby maximising the efficiency of the separation. Extraction of one set of 99 % pure particles at the liquid–air interface from the initial particle mixture using a manual pipette is demonstrated here. In addition, computational modelling performed suggests the critical separation size can be tuned by scaling the size of the system to alter which of ARFs and acoustic streaming-induced drag forces is dominant for given particle sizes, therefore presenting an approach to tunable particle separation system based on size.

Keywords

Acoustic radiation force Particle manipulation Ultrasonic standing wave Open fluid Sorting 

Notes

Acknowledgments

The authors gratefully acknowledge the support of the Australian Research Council in the form of Grant No. DP110104010.

Supplementary material

Supplementary material 1 (WMV 13484 kb)

References

  1. Barnkob R, Augustsson P, Laurell T, Bruus H (2012) Acoustic radiation-and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Phys Rev E 86(5):056307CrossRefGoogle Scholar
  2. Bazou D, Kearney R, Mansergh F, Bourdon C, Farrar J, Wride M (2011) Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap. Ultrasound Med Biol 37(2):321–330CrossRefGoogle Scholar
  3. Bernassau AL, Courtney CRP, Beeley J, Drinkwater BW, Cumming DRS (2013) Interactive manipulation of micro particles in an octagonal sonotweezer. Appl Phys Lett 102(16):4101CrossRefGoogle Scholar
  4. Collins DJ, Alan T, Helmerson K, Neild A (2013) Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation. Lab Chip 13(16):3225–3231CrossRefGoogle Scholar
  5. Frampton KD, Martin SE, Minor K (2003) The scaling of acoustic streaming for application in micro-fluidic devices. Appl Acoust 64(7):681–692CrossRefGoogle Scholar
  6. Frampton KD, Minor K, Martin S (2004) Acoustic streaming in micro-scale cylindrical channels. Appl Acoust 65(11):1121–1129CrossRefGoogle Scholar
  7. Franke T, Braunmuller S, Schmid L, Wixforth A, Weitz DA (2010) Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10(6):789–794CrossRefGoogle Scholar
  8. Gattiker F, Umbrecht F, Neuenschwander J, Sennhauser U, Hierold C (2008) Novel ultrasound read-out for a wireless implantable passive strain sensor (WIPSS). Sens Actuators A Phys 145–146:291–298CrossRefGoogle Scholar
  9. Gau H, Herminghaus S, Lenz P, Lipowsky R (1999) Liquid morphologies on structured surfaces: from micro channels to microchips. Science 283(5398):46–49CrossRefGoogle Scholar
  10. Glynne-Jones P, Demore CEM, Congwei Y, Yongqiang Q, Cochran S, Hill M (2012) Array-controlled ultrasonic manipulation of particles in planar acoustic resonator. IEEE Trans Ultrason Ferroelectr Freq Control 59(6):1258–1266CrossRefGoogle Scholar
  11. Gor’kov L (1962) On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov Phys Dokl 6:773–775Google Scholar
  12. Gralinski I, Alan T, Neild A (2012) Non-contact acoustic trapping in circular cross-section glass capillaries: a numerical study. J Acoust Soc Am 132(5):2978–2987CrossRefGoogle Scholar
  13. Gupta S, Feke DL, Manas-Zloczower I (1995) Fractionation of mixed particulate solids according to compressibility using ultrasonic standing wave fields. Chem Eng Sci 50(20):3275–3284CrossRefGoogle Scholar
  14. Hagsäter S, Lenshof A, Skafte-Pedersen P, Kutter JP, Laurell T, Bruus H (2008) Acoustic resonances in straight micro channels: beyond the 1D-approximation. Lab Chip 8(7):1178–1184CrossRefGoogle Scholar
  15. Hamilton MF, Ilinskii YA, Zabolotskaya EA (2003) Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width. J Acoust Soc Am 113(1):153–160CrossRefGoogle Scholar
  16. Hammarström B, Laurell T, Nilsson J (2012) Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems. Lab Chip 12(21):4296–4304CrossRefGoogle Scholar
  17. Hill M, Townsend RJ, Harris NR (2008) Modelling for the robust design of layered resonators for ultrasonic particle manipulation. Ultrasonics 48(6):521–528CrossRefGoogle Scholar
  18. Hultström J, Manneberg O, Dopf K, Hertz HM, Brismar H, Wiklund M (2007) Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip. Ultrasound Med Biol 33(1):145–151CrossRefGoogle Scholar
  19. Johansson L, Evander M, Lilliehorn T, Almqvist M, Nilsson J, Laurell T, Johansson S (2013) Temperature and trapping characterization of an acoustic trap with miniaturized integrated transducers—towards in-trap temperature regulation. Ultrasonics 53(5):1020–1032CrossRefGoogle Scholar
  20. Johnson DA, Feke DL (1995) Methodology for fractionating suspended particles using ultrasonic standing wave and divided flow fields. Sep Technol 5(4):251–258CrossRefGoogle Scholar
  21. Landenberger B, Höfemann H, Wadle S, Rohrbach A (2012) Microfluidic sorting of arbitrary cells with dynamic optical tweezers. Lab Chip 12(17):3177–3183CrossRefGoogle Scholar
  22. Lei J, Glynne-Jones P, Hill M (2013) Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices. Lab Chip 13(11):2133–2143CrossRefGoogle Scholar
  23. Leighton T (1994) The acoustic bubble. Academic Press, LondonGoogle Scholar
  24. Li H, Friend JR, Yeo LY (2008) Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation. Phys Rev Lett 101(8):084502CrossRefGoogle Scholar
  25. Manneberg O, Vanherberghen B, Svennebring J, Hertz HM, Onfelt B, Wiklund M (2008) A three-dimensional ultrasonic cage for characterization of individual cells. Appl Phys Lett 93(6):063901–063903CrossRefGoogle Scholar
  26. Muller PB, Barnkob R, Jensen MJH, Bruus H (2012) A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12(22):4617–4627CrossRefGoogle Scholar
  27. Nam J, Lim H, Kim D, Shin S (2011) Separation of platelets from whole blood using standing surface acoustic waves in a micro channel. Lab Chip 11(19):3361–3364CrossRefGoogle Scholar
  28. Neild A, Oberti S, Beyeler F, Dual J, Nelson BJ (2006) A micro-particle positioning technique combining an ultrasonic manipulator and a micro gripper. J Micromech Microeng 16(8):1562CrossRefGoogle Scholar
  29. Neild A, Oberti S, Dual J (2007) Design, modelling and characterization of microfluidic devices for ultrasonic manipulation. Sens Actuators B Chem 121(2):452–461CrossRefGoogle Scholar
  30. Nyborg WL (1958) Acoustic streaming near a boundary. J Acoust Soc Am 30:329MathSciNetCrossRefGoogle Scholar
  31. Nyborg W (1965) Acoustic streaming. Phys acoust 2(Pt B):265Google Scholar
  32. Oberti S, Neild A, Dual J (2007) Manipulation of micrometer sized particles within a micro machined fluidic device to form two-dimensional patterns using ultrasound. J Acoust Soc Am 121:778CrossRefGoogle Scholar
  33. Petersson F, Nilsson A, Holm C, Jönsson H, Laurell T (2005) Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip 5(1):20–22CrossRefGoogle Scholar
  34. Petersson F, Åberg L, Swärd-Nilsson A-M, Laurell T (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79(14):5117–5123CrossRefGoogle Scholar
  35. Rife J, Bell M, Horwitz J, Kabler M, Auyeung R, Kim W (2000) Miniature valveless ultrasonic pumps and mixers. Sens Actuators A Phys 86(1):135–140CrossRefGoogle Scholar
  36. Rogers P, Neild A (2011) Selective particle trapping using an oscillating microbubble. Lab Chip 11(21):3710–3715CrossRefGoogle Scholar
  37. Rogers P, Gralinski I, Galtry C, Neild A (2013) Selective particle and cell clustering at air–liquid interfaces within ultrasonic microfluidic systems. Microfluid Nanofluid 14(3–4):469–477CrossRefGoogle Scholar
  38. Shafiee H, Sano MB, Henslee EA, Caldwell JL, Davalos RV (2010) Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10(4):438–445CrossRefGoogle Scholar
  39. Shao FF, Neild A, Ng TW (2010) Hydrophobicity effect in the self assembly of particles in an evaporating droplet. J Appl Phys 108(3):034512–034518CrossRefGoogle Scholar
  40. Shi J, Ahmed D, Mao X, Lin S-CS, Lawit A, Huang TJ (2009a) Acoustic tweezers: patterning cells and micro particles using standing surface acoustic waves (SSAW). Lab Chip 9(20):2890–2895CrossRefGoogle Scholar
  41. Shi J, Huang H, Stratton Z, Huang Y, Huang TJ (2009b) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9(23):3354–3359CrossRefGoogle Scholar
  42. Sritharan K, Strobl C, Schneider M, Wixforth A, Guttenberg Zv (2006) Acoustic mixing at low Reynold’s numbers. Appl Phys Lett 88(5):054102–054103CrossRefGoogle Scholar
  43. Tan JN, Neild A (2012) Microfluidic mixing in a Y-junction open channel. AIP Advances 2(3):032111–032160CrossRefGoogle Scholar
  44. Weiser M, Apfel R, Neppiras E (1984) Interparticle forces on red cells in a standing wave field. Acta Acustica United Acustica 56(2):114–119zbMATHGoogle Scholar
  45. Woias P (2005) Micropumps—past, progress and future prospects. Sens Actuators B Chem 105(1):28–38CrossRefGoogle Scholar
  46. Xu L, Ng TW, Neild A (2009) Delicate selective single particle handling with a float-sink scheme. Appl Phys Lett 94(3):034103–034104CrossRefGoogle Scholar
  47. Yaralioglu GG, Wygant IO, Marentis TC, Khuri-Yakub BT (2004) Ultrasonic mixing in microfluidic channels using integrated transducers. Anal Chem 76(13):3694–3698CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Citsabehsan Devendran
    • 1
  • Ian Gralinski
    • 1
  • Adrian Neild
    • 1
  1. 1.Laboratory for Micro Systems, Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonAustralia

Personalised recommendations