Advertisement

Microfluidics and Nanofluidics

, Volume 17, Issue 4, pp 773–779 | Cite as

Rapid mold-free manufacturing of microfluidic devices with robust and spatially directed surface modifications

  • Gaspard Pardon
  • Farizah Saharil
  • J. Mikael Karlsson
  • Omkar Supekar
  • Carl Fredrik Carlborg
  • Wouter van der Wijngaart
  • Tommy Haraldsson
Short Communication

Abstract

A new and easy-to-use method that allows for mold-free and rapid prototyping of microfluidic devices, comprising channels, access holes, and surface-modified patterns, is presented. The innovative method is based on direct photolithographic patterning of an off-stoichiometry thiol-ene (OSTE) polymer formulation, tailor-made for photolithography, which offers unprecedented spatial resolution and allows for efficient, robust and reliable, room temperature surface modification and glue-free, covalent room temperature bonding. This mold-free process does not require clean room equipment and therefore allows for rapid, i.e., less than one hour, design-fabricate-test cycles, using a material suited for larger-scale production. The excellent photolithographic properties of this new OSTE formulation allow patterning with unprecedented, for thiol-ene polymer systems, resolution in hundreds of micrometers thick layers, 200 μm thick in this work. Moreover, we demonstrated robust, covalent and spatially controlled modification of the microchannel surfaces with an initial contact angle of 76° by patterning hydrophobic/hydrophilic areas with contact angles of 102° and 43°, respectively.

Keywords

Lab on chip Microfluidics Photolithography OSTE polymer Surface modification 

References

  1. Bartholomeusz DA, Boutte RW, Andrade JD (2005) Xurography: rapid prototyping of microstructures using a cutting plotter. J Microelectromech Syst 14(6):1364–1374CrossRefGoogle Scholar
  2. Becker H, Gärtner C (2007) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111CrossRefGoogle Scholar
  3. Belder D, Ludwig M (2003) Surface modification in microchip electrophoresis. Electrophoresis 24(21):3595–3606CrossRefGoogle Scholar
  4. Bohl B, Steger R, Zengerle R, Koltay P (2005) Multi-layer SU-8 lift-off technology for microfluidic devices. J Micromech Microeng 15(6):1125–1130CrossRefGoogle Scholar
  5. Bowman CN, Kloxin CJ (2008) Toward an enhanced understanding and implementation of photopolymerization reactions. AIChE J 54(11):2775–2795CrossRefGoogle Scholar
  6. Carlborg CF, Haraldsson T, Öberg K, Malkoch M, van der Wijngaart W (2011) Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microuidic devices. Lab Chip 11(18):3136–3147CrossRefGoogle Scholar
  7. Carlborg CF, Moraga F, Saharil F, van der Wijngaart W, Haraldsson T (2012) Rapid permanent hydrophilic and hydrophobic patterning of polymer surfaces via off stoichiometry thiol-ene (OSTE) photographting. In: 16th International conference on miniaturized systems for chemistry and life sciences, pp 677–679Google Scholar
  8. Chin CD, Linder V, Sia SK (2012) Commercialization of microuidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134CrossRefGoogle Scholar
  9. Diaz-Quijada GA, Peytavi R, Nantel A, Roy E, Bergeron MG, Dumoulin MM, Veres T (2007) Surface modification of thermoplastics: towards the plastic biochip for high throughput screening devices. Lab Chip 7(7):856–862CrossRefGoogle Scholar
  10. Haraldsson T, Hutchison, Sebra, Good, Anseth, Bowman (2006) 3D polymeric microuidic device fabrication via contact liquid photolithographic polymerization (CLiPP). Sens Actuators 113(1):454–460Google Scholar
  11. Hutchison JB, Haraldsson KT, Good BT, Sebra RP, Luo N, Anseth KS, Bowman CN (2004) Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP). Lab Chip 4(6):658–662CrossRefGoogle Scholar
  12. Joshi M, Pinto R, Rao VR, Mukherji S (2007) Silanization and antibody immobilization on SU-8. Appl Surf Sci 253(6):3127–3132CrossRefGoogle Scholar
  13. Karlsson JM, Carlborg CF, Saharil F, Forsberg F, Niklaus F, van der Wijngaart W, Haraldsson T (2012) High-resolution micropatterning of off-stoichiometric thiol-enes (OSTE) via a novel lithography mechanism. In: 16th International conference on miniaturized systems for chemistry and life sciences, pp 225–227Google Scholar
  14. Lafleur JP, Kwapiszewski R, Jensen TG, Kutter JP (2013) Rapid photochemical surface patterning of proteins in thiol-ene based microuidic devices. Analyst 138(3):845CrossRefGoogle Scholar
  15. Lee KS, Kim RH, Yang DY, Park SH (2008) Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci 33(6):631–681CrossRefGoogle Scholar
  16. Liedert R, Amundsen LK, Hokkanen A, Mäki M, Aittakorpi A, Pakanen M, Scherer JR, Mathies RA, Kurkinen M, Uusitalo S, Hakalahti L, Nevanen TK, Siitari H, Söderlund H (2012) Disposable roll-to-roll hot embossed electrophoresis chip for detection of antibiotic resistance gene mecA in bacteria. Lab Chip 12(2):333–339CrossRefGoogle Scholar
  17. Locascio LE, Henry AC, Johnson TJ, Ross D (2003) Lab-on-a-chip: miniaturized systems for (bio) chemical analysis and synthesis: google books. Lab ChipGoogle Scholar
  18. Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130CrossRefGoogle Scholar
  19. Ng SH, Wang ZF (2008) Hot roller embossing for microfluidics: process and challenges. Microsyst Technol 15(8):1149–1156MathSciNetCrossRefGoogle Scholar
  20. Piruska A, Nikcevic I, Lee SH, Ahn C, Heineman WR, Limbach PA, Seliskar CJ (2005) The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5(12):1348CrossRefGoogle Scholar
  21. Qvortrup K, Taveras KM, Thastrup O, Nielsen TE (2011) Chemical synthesis on SU-8. Chem Commun 47(4):1309–1311CrossRefGoogle Scholar
  22. Rötting O, Röpke W, Becker H, Gärtner C (2002) Polymer microfabrication technologies. Microsyst Technol 8(1):32–36CrossRefGoogle Scholar
  23. Sato H, Matsumura H, Keino S, Shoji S (2006) An all SU-8 microuidic chip with built-in 3D fine microstructures. J Micromech Microeng 16(11):2318–2322CrossRefGoogle Scholar
  24. Sikanen TM, Lafleur JP, Moilanen ME, Zhuang G, Jensen TG, Kutter JP (2013) Fabrication and bonding of thiol-ene-based microuidic devices. J Micromech Microeng 23(3):037002CrossRefGoogle Scholar
  25. Tantra R, van Heeren H (2013) Product qualification: a barrier to point-of-care microfluidic-based diagnostics? Lab Chip 13(12):2199–2201CrossRefGoogle Scholar
  26. Walther F, Davydovskaya P, Zuecher S, Kaiser M, Herberg H, Gigler AM, Stark RW (2007) Stability of the hydrophilic behavior of oxygen plasma activated SU-8. J Micromech Microeng 17(3):524–531CrossRefGoogle Scholar
  27. Walther F, Drobek T, Gigler AM, Hennemeyer M, Kaiser M, Herberg H, Shimitsu T, Morfill GE, Stark RW (2010) Surface hydrophilization of SU-8 by plasma and wet chemical processes. Surf Interface Anal 42(12–13):1735–1744CrossRefGoogle Scholar
  28. Wang Y, Pai JH, Lai HH, Sims CE, Bachman M, Li GP, Allbritton NL (2007) Surface graft polymerization of SU-8 for bio-MEMS applications. J Micromech Microeng 17(7):1371–1380CrossRefGoogle Scholar
  29. Yeo LP, Ng SH, Wang Z, Wang Z, de Rooij NF (2009) Micro-fabrication of polymeric devices using hot roller embossing. Microelectron Eng 86(4–6):933–936CrossRefGoogle Scholar
  30. Yuen PK, Goral VN (2010) Low-cost rapid prototyping of exible microfluidic devices using a desktop digital craft cutter. Lab Chip 10(3):384–387CrossRefGoogle Scholar
  31. Zhang J, Chan-Park MB, Conner SR (2004) Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8. Lab Chip 4(6):646–653CrossRefGoogle Scholar
  32. Zhou J, Khodakov DA, Ellis AV, Voelcker NH (2012) Surface modification for PDMS-based microfluidic devices. Electrophoresis 33(1):89–104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gaspard Pardon
    • 1
  • Farizah Saharil
    • 1
  • J. Mikael Karlsson
    • 1
  • Omkar Supekar
    • 2
  • Carl Fredrik Carlborg
    • 1
  • Wouter van der Wijngaart
    • 1
  • Tommy Haraldsson
    • 1
  1. 1.Micro and NanosystemsKTH Royal Institute of TechnologyStockholmSweden
  2. 2.Indian Institute of Technology Bombay, PowaiMumbaiIndia

Personalised recommendations