Skip to main content
Log in

Rapid mold-free manufacturing of microfluidic devices with robust and spatially directed surface modifications

  • Short Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A new and easy-to-use method that allows for mold-free and rapid prototyping of microfluidic devices, comprising channels, access holes, and surface-modified patterns, is presented. The innovative method is based on direct photolithographic patterning of an off-stoichiometry thiol-ene (OSTE) polymer formulation, tailor-made for photolithography, which offers unprecedented spatial resolution and allows for efficient, robust and reliable, room temperature surface modification and glue-free, covalent room temperature bonding. This mold-free process does not require clean room equipment and therefore allows for rapid, i.e., less than one hour, design-fabricate-test cycles, using a material suited for larger-scale production. The excellent photolithographic properties of this new OSTE formulation allow patterning with unprecedented, for thiol-ene polymer systems, resolution in hundreds of micrometers thick layers, 200 μm thick in this work. Moreover, we demonstrated robust, covalent and spatially controlled modification of the microchannel surfaces with an initial contact angle of 76° by patterning hydrophobic/hydrophilic areas with contact angles of 102° and 43°, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bartholomeusz DA, Boutte RW, Andrade JD (2005) Xurography: rapid prototyping of microstructures using a cutting plotter. J Microelectromech Syst 14(6):1364–1374

    Article  Google Scholar 

  • Becker H, Gärtner C (2007) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111

    Article  Google Scholar 

  • Belder D, Ludwig M (2003) Surface modification in microchip electrophoresis. Electrophoresis 24(21):3595–3606

    Article  Google Scholar 

  • Bohl B, Steger R, Zengerle R, Koltay P (2005) Multi-layer SU-8 lift-off technology for microfluidic devices. J Micromech Microeng 15(6):1125–1130

    Article  Google Scholar 

  • Bowman CN, Kloxin CJ (2008) Toward an enhanced understanding and implementation of photopolymerization reactions. AIChE J 54(11):2775–2795

    Article  Google Scholar 

  • Carlborg CF, Haraldsson T, Öberg K, Malkoch M, van der Wijngaart W (2011) Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microuidic devices. Lab Chip 11(18):3136–3147

    Article  Google Scholar 

  • Carlborg CF, Moraga F, Saharil F, van der Wijngaart W, Haraldsson T (2012) Rapid permanent hydrophilic and hydrophobic patterning of polymer surfaces via off stoichiometry thiol-ene (OSTE) photographting. In: 16th International conference on miniaturized systems for chemistry and life sciences, pp 677–679

  • Chin CD, Linder V, Sia SK (2012) Commercialization of microuidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134

    Article  Google Scholar 

  • Diaz-Quijada GA, Peytavi R, Nantel A, Roy E, Bergeron MG, Dumoulin MM, Veres T (2007) Surface modification of thermoplastics: towards the plastic biochip for high throughput screening devices. Lab Chip 7(7):856–862

    Article  Google Scholar 

  • Haraldsson T, Hutchison, Sebra, Good, Anseth, Bowman (2006) 3D polymeric microuidic device fabrication via contact liquid photolithographic polymerization (CLiPP). Sens Actuators 113(1):454–460

  • Hutchison JB, Haraldsson KT, Good BT, Sebra RP, Luo N, Anseth KS, Bowman CN (2004) Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP). Lab Chip 4(6):658–662

    Article  Google Scholar 

  • Joshi M, Pinto R, Rao VR, Mukherji S (2007) Silanization and antibody immobilization on SU-8. Appl Surf Sci 253(6):3127–3132

    Article  Google Scholar 

  • Karlsson JM, Carlborg CF, Saharil F, Forsberg F, Niklaus F, van der Wijngaart W, Haraldsson T (2012) High-resolution micropatterning of off-stoichiometric thiol-enes (OSTE) via a novel lithography mechanism. In: 16th International conference on miniaturized systems for chemistry and life sciences, pp 225–227

  • Lafleur JP, Kwapiszewski R, Jensen TG, Kutter JP (2013) Rapid photochemical surface patterning of proteins in thiol-ene based microuidic devices. Analyst 138(3):845

    Article  Google Scholar 

  • Lee KS, Kim RH, Yang DY, Park SH (2008) Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci 33(6):631–681

    Article  Google Scholar 

  • Liedert R, Amundsen LK, Hokkanen A, Mäki M, Aittakorpi A, Pakanen M, Scherer JR, Mathies RA, Kurkinen M, Uusitalo S, Hakalahti L, Nevanen TK, Siitari H, Söderlund H (2012) Disposable roll-to-roll hot embossed electrophoresis chip for detection of antibiotic resistance gene mecA in bacteria. Lab Chip 12(2):333–339

    Article  Google Scholar 

  • Locascio LE, Henry AC, Johnson TJ, Ross D (2003) Lab-on-a-chip: miniaturized systems for (bio) chemical analysis and synthesis: google books. Lab Chip

  • Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130

    Article  Google Scholar 

  • Ng SH, Wang ZF (2008) Hot roller embossing for microfluidics: process and challenges. Microsyst Technol 15(8):1149–1156

    Article  MathSciNet  Google Scholar 

  • Piruska A, Nikcevic I, Lee SH, Ahn C, Heineman WR, Limbach PA, Seliskar CJ (2005) The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5(12):1348

    Article  Google Scholar 

  • Qvortrup K, Taveras KM, Thastrup O, Nielsen TE (2011) Chemical synthesis on SU-8. Chem Commun 47(4):1309–1311

    Article  Google Scholar 

  • Rötting O, Röpke W, Becker H, Gärtner C (2002) Polymer microfabrication technologies. Microsyst Technol 8(1):32–36

    Article  Google Scholar 

  • Sato H, Matsumura H, Keino S, Shoji S (2006) An all SU-8 microuidic chip with built-in 3D fine microstructures. J Micromech Microeng 16(11):2318–2322

    Article  Google Scholar 

  • Sikanen TM, Lafleur JP, Moilanen ME, Zhuang G, Jensen TG, Kutter JP (2013) Fabrication and bonding of thiol-ene-based microuidic devices. J Micromech Microeng 23(3):037002

    Article  Google Scholar 

  • Tantra R, van Heeren H (2013) Product qualification: a barrier to point-of-care microfluidic-based diagnostics? Lab Chip 13(12):2199–2201

    Article  Google Scholar 

  • Walther F, Davydovskaya P, Zuecher S, Kaiser M, Herberg H, Gigler AM, Stark RW (2007) Stability of the hydrophilic behavior of oxygen plasma activated SU-8. J Micromech Microeng 17(3):524–531

    Article  Google Scholar 

  • Walther F, Drobek T, Gigler AM, Hennemeyer M, Kaiser M, Herberg H, Shimitsu T, Morfill GE, Stark RW (2010) Surface hydrophilization of SU-8 by plasma and wet chemical processes. Surf Interface Anal 42(12–13):1735–1744

    Article  Google Scholar 

  • Wang Y, Pai JH, Lai HH, Sims CE, Bachman M, Li GP, Allbritton NL (2007) Surface graft polymerization of SU-8 for bio-MEMS applications. J Micromech Microeng 17(7):1371–1380

    Article  Google Scholar 

  • Yeo LP, Ng SH, Wang Z, Wang Z, de Rooij NF (2009) Micro-fabrication of polymeric devices using hot roller embossing. Microelectron Eng 86(4–6):933–936

    Article  Google Scholar 

  • Yuen PK, Goral VN (2010) Low-cost rapid prototyping of exible microfluidic devices using a desktop digital craft cutter. Lab Chip 10(3):384–387

    Article  Google Scholar 

  • Zhang J, Chan-Park MB, Conner SR (2004) Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8. Lab Chip 4(6):646–653

    Article  Google Scholar 

  • Zhou J, Khodakov DA, Ellis AV, Voelcker NH (2012) Surface modification for PDMS-based microfluidic devices. Electrophoresis 33(1):89–104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter van der Wijngaart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardon, G., Saharil, F., Karlsson, J.M. et al. Rapid mold-free manufacturing of microfluidic devices with robust and spatially directed surface modifications. Microfluid Nanofluid 17, 773–779 (2014). https://doi.org/10.1007/s10404-014-1351-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1351-9

Keywords

Navigation