Skip to main content

Review and analysis of performance metrics of droplet microfluidics systems

Abstract

Droplet microfluidics has enabled many recent applications in high-throughput screening and diagnostics. Little work has been done, however, to analyze the performance of droplet-based assays. This review aims to apply what is known in the literature to the analysis of the performance metrics of droplet-based assays, with specific relevance to diagnostic and biomedical applications based on two processes: enzymatic reactions and cell culture in droplets. By considering the physical scaling of individual processes—droplet generation, reaction kinetics, cell growth, and droplet interrogation—it is possible to extract a practical relationship between input parameters (e.g., droplet size and droplet polydispersity) and the output characteristics (e.g., throughput, dynamic range, and accuracy) of the assay. This review can serve as a guide to the design of droplet-based assays for achieving desired performance. While the focus is on assays based on enzymatic reactions and cell cultures, a similar analysis can be applied to other assays based on polymerase chain reaction and the detection of nucleic acids.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret J-C, Marquez M, Klibanov AM, Griffiths AD, Weitz DA (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci 107:4004–4009

    Article  Google Scholar 

  • Anna SL, Mayer HC (2006) Microscale tipstreaming in a microfluidic flow focusing device. Phys Fluids 18(12): 121512(1)–121512(13)

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366

    Article  Google Scholar 

  • Barbier V, Willaime H, Tabeling P, Jousse F (2006) Producing droplets in parallel microfluidic systems. Phys Rev E 74(4):046306(1)–046306(4)

  • Bardin D, Kendall MR, Dayton PA, Lee AP (2013) Parallel generation of uniform fine droplets at hundreds of kilohertz in a flow-focusing module. Biomicrofluidics 7(3):034112(1)–034112(13)

  • Baret J-C (2012) Surfactants in droplet-based microfluidics. Lab Chip 12(3):422–433

    Article  Google Scholar 

  • Baret J-C, Miller OJ, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels ML, Hutchison JB, Agresti JJ, Link DR, Weitz DA, Griffiths AD (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9(13):1850–1858

    Article  Google Scholar 

  • Baret J-C, Beck Y, Billas-Massobrio I, Moras D, Griffiths AD (2010) Quantitative cell-based reporter gene assays using droplet-based microfluidics. Chem Biol 17(5):528–536

    Article  Google Scholar 

  • Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10(16):2032–2045

    Article  Google Scholar 

  • Bauer AW, Perry DM, Kirby WMM (1959) Single-disk antibiotic-sensitivity testing of Staphylococci—an analysis of technique and results. Arch Intern Med 104(2):208–216

    Article  Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496

    Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2010) Biochemistry, 7th edn. W. H. Freeman, New York

    Google Scholar 

  • Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8(8):1265–1272

    Article  Google Scholar 

  • Boedicker JQ, Vincent ME, Ismagilov RF (2009) Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angewandte Chemie-Int Ed 48:5908–5911

    Article  Google Scholar 

  • Bremond N, Bibette J (2012) Exploring emulsion science with microfluidics. Soft Matter 8(41):10549–10559

    Article  Google Scholar 

  • Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci 106(34):14195–14200

    Article  Google Scholar 

  • Brown CD, Davis HT (2006) Receiver operating characteristics curves and related decision measures: a tutorial. Chemom Intell Lab Syst 80(1):24–38

    Article  Google Scholar 

  • Charcosset C, Limayem I, Fessi H (2004) The membrane emulsification process—a review. J Chem Technol Biotechnol 79(3):209–218

    Article  Google Scholar 

  • Chen Y, Gani AW, Tang SKY (2012) Characterization of sensitivity and specificity in leaky droplet-based assays. Lab Chip 12(23):5093–5103

    Article  Google Scholar 

  • Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40(19):R319–R336

    Article  Google Scholar 

  • Churski K, Kaminski TS, Jakiela S, Kamysz W, Baranska-Rybak W, Weibel DB, Garstecki P (2012) Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip 12(9):1629–1637

    Article  Google Scholar 

  • Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Koster S, Duan H, Holtze C, Weitz DA, Griffiths AD, Merten CA (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15(5):427–437

    Article  Google Scholar 

  • Clinical and Laboratory Standards Institute (2007) Performance standards for antimicrobial susceptibility testing; Seventeenth informational supplement vol 27. Wayne, PA

  • Courtois F, Olguin LF, Whyte G, Theberge AB, Huck WTS, Hollfelder F, Abell C (2009) Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays. Anal Chem 81(8):3008–3016

    Article  Google Scholar 

  • Cubaud T, Mason TG (2008) Capillary threads and viscous droplets in square microchannels. Phys Fluids 20(5):053302(1)–053302(11)

  • Derda R, Tang SKY, Whitesides GM (2010) Uniform amplification of phage with different growth characteristics in individual compartments consisting of monodisperse droplets. Angewandte Chemie-Intel Ed 49(31):5301–5304

    Article  Google Scholar 

  • Dhar N, McKinney JD (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol 10(1):30–38

    Article  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  Google Scholar 

  • Du GS, Pan JZ, Zhao SP, Zhu Y, den Toonder JMJ, Fang Q (2013) Cell-based drug combination screening with a microfluidic droplet array system. Anal Chem 85(14):6740–6747

    Article  Google Scholar 

  • Edd JF, Di Carlo D, Humphry KJ, Koster S, Irimia D, Weitz DA, Toner M (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8(8):1262–1264

    Article  Google Scholar 

  • Elhanati Y, Brenner N (2012) Metabolic variability in micro-populations. PLoS One 7(12):52105(1)–52105(9)

  • Fayer MD (2012) Dynamics of water interacting with interfaces, molecules, and ions. Acc Chem Res 45(1):3–14

    Article  Google Scholar 

  • Frenz L, Blank K, Brouzes E, Griffiths AD (2009) Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab Chip 9(10):1344–1348

    Article  Google Scholar 

  • Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85(13):2649–2651

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3):437–446

    Article  Google Scholar 

  • Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12(12):2146–2155

    Article  Google Scholar 

  • Hashimoto M, Shevkoplyas SS, Zasonska B, Szymborski T, Garstecki P, Whitesides GM (2008) Formation of bubbles and droplets in parallel. Coupled flow-focusing geometries. Small 4(10):1795–1805

    Article  Google Scholar 

  • Hatch AC, Fisher JS, Tovar AR, Hsieh AT, Lin R, Pentoney SL, Yang DL, Lee AP (2011) 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip 11(22):3838–3845

    Article  Google Scholar 

  • Holtze C, Rowat AC, Agresti JJ, Hutchison JB, Angile FE, Schmitz CHJ, Koster S, Duan H, Humphry KJ, Scanga RA, Johnson JS, Pisignano D, Weitz DA (2008) Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8(10):1632–1639

    Article  Google Scholar 

  • Huebner A, Olguin LF, Bratton D, Whyte G, Huck WTS, de Mello AJ, Edel JB, Abell C, Hollfelder F (2008) Development of quantitative cell-based enzyme assays in microdroplets. Anal Chem 80(10):3890–3896

    Article  Google Scholar 

  • Ingham CJ, Sprenkels A, Bomer J, Molenaar D, van den Berg A, Hylckama Vlieg JE, de Vos WM (2007) The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci 104(46):18217–18222

    Article  Google Scholar 

  • Inoue I, Wakamoto Y, Moriguchi H, Okano K, Yasuda K (2001) On-chip culture system for observation of isolated individual cells. Lab Chip 1(1):50–55

    Article  Google Scholar 

  • Joensson HN, Svahn HA (2012) Droplet microfluidics—a tool for single-cell analysis. Angewandte Chemie-Intl Ed 51(49):12176–12192

    Article  Google Scholar 

  • Joensson HN, Samuels ML, Brouzes ER, Medkova M, Uhlen M, Link DR, Andersson-Svahn H (2009) Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidic droplets. Angewandte Chemie-Intl Ed 48(14):2518–2521

    Article  Google Scholar 

  • Kintses B, van Vliet LD, Devenish SRA, Hollfelder F (2010) Microfluidic droplets: new integrated workflows for biological experiments. Curr Opin Chem Biol 14(5):548–555

    Article  Google Scholar 

  • Kintses B, Hein C, Mohamed MF, Fischlechner M, Courtois F, Leine C, Hollfelder F (2012) Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem Biol 19(8):1001–1009

    Article  Google Scholar 

  • Kiss MM, Ortoleva-Donnelly L, Beer NR, Warner J, Bailey CG, Colston BW, Rothberg JM, Link DR, Leamon JH (2008) High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal Chem 80(23):8975–8981

    Article  Google Scholar 

  • Kukizaki M, Wada T (2008) Effect of the membrane wettability on the size and size distribution of microbubbles formed from Shirasu-porous-glass (SPG) membranes. Coll Sur A Physicochem Eng Asp 317(1–3):146–154

    Article  Google Scholar 

  • Lagus TP, Edd JF (2013) A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics. J Phys D Appl Phys 46: 114005 (21pp)

    Google Scholar 

  • Lee W, Walker LM, Anna SL (2009) Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Phys Fluids 21(3):032103

    Article  Google Scholar 

  • Lee YY, Narayanan K, Gao SJ, Ying JY (2012) Elucidating drug resistance properties in scarce cancer stem cells using droplet microarray. Nano Today 7(1):29–34

    Article  Google Scholar 

  • Leung K, Zahn H, Leaver T, Konwar KM, Hanson NW, Page AP, Lo CC, Chain PS, Hallam SJ, Hansen CL (2012) A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc Natl Acad Sci 109(20):7665–7670

    Article  Google Scholar 

  • Li W, Greener J, Voicu D, Kumacheva E (2009) Multiple modular microfluidic (M-3) reactors for the synthesis of polymer particles. Lab Chip 9(18):2715–2721

    Article  Google Scholar 

  • Lim J, Gruner P, Konrad M, Baret J-C (2013) Micro-optical lens array for fluorescence detection in droplet-based microfluidics. Lab Chip 13(8):1472–1475

    Article  Google Scholar 

  • Liu W, Kim HJ, Lucchetta EM, Du W, Ismagilov RF (2009) Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9(15):2153–2162

    Article  Google Scholar 

  • Marcoux PR, Dupoy M, Mathey R, Novelli-Rousseau A, Heran V, Morales S, Rivera F, Joly PL, Moy J-P, Mallard F (2011) Micro-confinement of bacteria into w/o emulsion droplets for rapid detection and enumeration. Coll Sur A Physicochem Eng Asp 377(1–3):54–62

    Article  Google Scholar 

  • Martin K, Henkel T, Baier V, Grodrian A, Schon T, Roth M, Kohler JM, Metze J (2003) Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices. Lab Chip 3(3):202–207

    Article  Google Scholar 

  • Matochko WL, Ng S, Jafari MR, Romaniuk J, Tang SKY, Derda R (2012) Uniform amplification of phage display libraries in monodisperse emulsions. Methods 58(1):18–27

    Article  Google Scholar 

  • Mazutis L, Araghi AF, Miller OJ, Baret J-C, Frenz L, Janoshazi A, Taly V, Miller BJ, Hutchison JB, Link D, Griffiths AD, Ryckelynck M (2009a) Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal Chem 81(12):4813–4821

    Article  Google Scholar 

  • Mazutis L, Baret J-C, Treacy P, Skhiri Y, Araghi AF, Ryckelynck M, Taly V, Griffiths AD (2009b) Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Lab Chip 9(20):2902–2908

    Article  Google Scholar 

  • Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8(5):870–891

    Article  Google Scholar 

  • McCalla SE, Tripathi A (2011) Microfluidic reactors for diagnostics applications. In: Yarmush ML, Duncan JS, Gray ML (eds) Annual review of biomedical engineering, vol 13. Annual Review of Biomedical Engineering, pp 321–343

  • Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8(4):283–298

    Article  Google Scholar 

  • Michaelis L, Menten ML, Johnson KA, Goody RS (2011) The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50(39):8264–8269

    Article  Google Scholar 

  • Miller EM, Wheeler AR (2008) A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 80(5):1614–1619

    Article  Google Scholar 

  • Miller OJ, El Harrak A, Mangeat T, Baret J-C, Frenz L, El Debs B, Mayot E, Samuels ML, Rooney EK, Dieu P, Galvan M, Link DR, Griffiths AD (2012) High-resolution dose-response screening using droplet-based microfluidics. Proc Natl Acad Sci 109(2):378–383

    Article  Google Scholar 

  • Moore GE, Ito E, Ulrich K, Sandberg AA (1966) Culture of human leukemia cells. Cancer 19(5):713–723

    Article  Google Scholar 

  • Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8(2):287–293

    Article  Google Scholar 

  • Nisisako T, Ando T, Hatsuzawa T (2012) High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces. Lab Chip 12(18):3426–3435

    Article  Google Scholar 

  • Niu X, deMello AJ (2012) Building droplet-based microfluidic systems for biological analysis. Biochem Soc Trans 40:615–623

    Article  Google Scholar 

  • Paegel BM, Joyce GF (2010) Microfluidic compartmentalized directed evolution. Chem Biol 17(7):717–724

    Article  Google Scholar 

  • Park J, Kerner A, Burns MA, Lin XXN (2011) Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One 6(2):17019(1)–17019(7).

  • Pekin D, Skhiri Y, Baret J-C, Le Corre D, Mazutis L, Ben Salem C, Millot F, El Harrak A, Hutchison JB, Larson JW, Link DR, Laurent-Puig P, Griffiths AD, Taly V (2011) Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11(13):2156–2166

    Article  Google Scholar 

  • Peters T (1995) All about albumin: biochemistry, genetics and medical applications. Academic Press, New York

    Google Scholar 

  • Platzman I, Janiesch J-W, Spatz JP (2013) Synthesis of nanostructured and biofunctionalized water-in-oil droplets as tools for homing T cells. J Am Chem Soc 135(9):3339–3342

    Article  Google Scholar 

  • Romanowsky MB, Abate AR, Rotem A, Holtze C, Weitz DA (2012) High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 12(4):802–807

    Article  Google Scholar 

  • Rosenfeld L, Fan L, Chen Y, Swoboda R, Tang SKY (2013) Break-up of droplets in a concentrated emulsion flowing through a narrow constriction. Soft Matter. doi:10.1039/C3SM51843D

    Google Scholar 

  • Schonbrun E, Abate AR, Steinvurzel PE, Weitz DA, Crozier KB (2010) High-throughput fluorescence detection using an integrated zone-plate array. Lab Chip 10(7):852–856

    Article  Google Scholar 

  • Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics. Rep Prog Phys 75(1):016601(1)–016601(41)

  • Sela Y, Magdassi S, Garti N (1995) Release of markers from the inner water phase of W/O/W emulsions stabilized by silicone-based polymeric surfactants. J Control Release 33(1):1–12

    Article  Google Scholar 

  • Silber JJ, Biasutti A, Abuin E, Lissi E (1999) Interactions of small molecules with reverse micelles. Adv Coll Interface Sci 82(1–3):189–252

    Article  Google Scholar 

  • Skhiri Y, Gruner P, Semin B, Brosseau Q, Pekin D, Mazutis L, Goust V, Kleinschmidt F, El Harrak A, Hutchison JB, Mayot E, Bartolo J-F, Griffiths AD, Taly V, Baret J-C (2012) Dynamics of molecular transport by surfactants in emulsions. Soft Matter 8(41):10618–10627

    Article  Google Scholar 

  • Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125(47):14613–14619

    Article  Google Scholar 

  • Srisa-Art M, Bonzani IC, Williams A, Stevens MM, deMello AJ, Edel JB (2009) Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst 134(11):2239–2245

    Article  Google Scholar 

  • Stan CA, Tang SKY, Whitesides GM (2009) Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate. Anal Chem 81(6):2399–2402

    Article  Google Scholar 

  • Stone HA (1994) Dynamics of drop deformation and breakup in viscous fluids. Annu Rev Fluid Mech 26:65–102

    Article  Google Scholar 

  • Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220

    Article  Google Scholar 

  • Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angewandte Chemie-Intern Ed 49(34):5846–5868

    Article  Google Scholar 

  • Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA (2007) Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett 99(9):094502(1)–094502(4).

  • Vladisavljevic GT, Shimizu M, Nakashima T (2005) Permeability of hydrophilic and hydrophobic Shirasu-porous-glass (SPG) membranes to pure liquids and its microstructure. J Membr Sci 250(1–2):69–77

    Article  Google Scholar 

  • Vladisavljevic GT, Shimizu M, Nakashima T (2006) Production of multiple emulsions for drug delivery systems by repeated SPG membrane homogenization: influence of mean pore size, interfacial tension and continuous phase viscosity. J Membr Sci 284(1–2):373–383

    Article  Google Scholar 

  • Vladisavljevic GT, Kobayashi I, Nakajima M (2012) Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluidics Nanofluidics 13(1):151–178

    Article  Google Scholar 

  • Wilson GS (1922) The proportion of viable bacteria in young cultures with especial reference to the technique employed in counting. J Bacteriol 7(4):405–446

    Google Scholar 

  • Woronoff G, El Harrak A, Mayot E, Schicke O, Miller OJ, Soumillion P, Griffiths AD, Ryckelynck M (2011) New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications. Anal Chem 83(8):2852–2857

    Article  Google Scholar 

  • Wu N, Courtois F, Zhu Y, Oakeshott J, Easton C, Abell C (2010) Management of the diffusion of 4-methylumbelliferone across phases in microdroplet-based systems for in vitro protein evolution. Electrophoresis 31(18):3121–3128

    Article  Google Scholar 

  • Xie H, Mire J, Kong Y, Chang M, Hassounah HA, Thornton CN, Sacchettini JC, Cirillo JD, Rao J (2012) Rapid point-of-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe. Nat Chem 4(10):802–809

    Article  Google Scholar 

  • Yuan JM, Martinezbilbao M, Huber RE (1994) Substitutions for glu-537 of beta-galactosidase from Escherichia coli cause large decreases in catalytic activity. Biochem J 299:527–531

    Google Scholar 

  • Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots—a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577

    Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the Stanford Center for Innovation in Global Health, Stanford Woods Institute for the Environment, the California Sea Grant Project No. R/CONT-219 through NOAA’s National Sea Grant College Program, 3M, and the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. We acknowledge Y. Chen for initial help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sindy K. Y. Tang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosenfeld, L., Lin, T., Derda, R. et al. Review and analysis of performance metrics of droplet microfluidics systems. Microfluid Nanofluid 16, 921–939 (2014). https://doi.org/10.1007/s10404-013-1310-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1310-x

Keywords

  • Droplet microfluidics
  • Performance metrics
  • High-throughput screening
  • Diagnostics