Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret J-C, Marquez M, Klibanov AM, Griffiths AD, Weitz DA (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci 107:4004–4009
Article
Google Scholar
Anna SL, Mayer HC (2006) Microscale tipstreaming in a microfluidic flow focusing device. Phys Fluids 18(12): 121512(1)–121512(13)
Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366
Article
Google Scholar
Barbier V, Willaime H, Tabeling P, Jousse F (2006) Producing droplets in parallel microfluidic systems. Phys Rev E 74(4):046306(1)–046306(4)
Bardin D, Kendall MR, Dayton PA, Lee AP (2013) Parallel generation of uniform fine droplets at hundreds of kilohertz in a flow-focusing module. Biomicrofluidics 7(3):034112(1)–034112(13)
Baret J-C (2012) Surfactants in droplet-based microfluidics. Lab Chip 12(3):422–433
Article
Google Scholar
Baret J-C, Miller OJ, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels ML, Hutchison JB, Agresti JJ, Link DR, Weitz DA, Griffiths AD (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9(13):1850–1858
Article
Google Scholar
Baret J-C, Beck Y, Billas-Massobrio I, Moras D, Griffiths AD (2010) Quantitative cell-based reporter gene assays using droplet-based microfluidics. Chem Biol 17(5):528–536
Article
Google Scholar
Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10(16):2032–2045
Article
Google Scholar
Bauer AW, Perry DM, Kirby WMM (1959) Single-disk antibiotic-sensitivity testing of Staphylococci—an analysis of technique and results. Arch Intern Med 104(2):208–216
Article
Google Scholar
Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496
Google Scholar
Berg JM, Tymoczko JL, Stryer L (2010) Biochemistry, 7th edn. W. H. Freeman, New York
Google Scholar
Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8(8):1265–1272
Article
Google Scholar
Boedicker JQ, Vincent ME, Ismagilov RF (2009) Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angewandte Chemie-Int Ed 48:5908–5911
Article
Google Scholar
Bremond N, Bibette J (2012) Exploring emulsion science with microfluidics. Soft Matter 8(41):10549–10559
Article
Google Scholar
Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci 106(34):14195–14200
Article
Google Scholar
Brown CD, Davis HT (2006) Receiver operating characteristics curves and related decision measures: a tutorial. Chemom Intell Lab Syst 80(1):24–38
Article
Google Scholar
Charcosset C, Limayem I, Fessi H (2004) The membrane emulsification process—a review. J Chem Technol Biotechnol 79(3):209–218
Article
Google Scholar
Chen Y, Gani AW, Tang SKY (2012) Characterization of sensitivity and specificity in leaky droplet-based assays. Lab Chip 12(23):5093–5103
Article
Google Scholar
Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40(19):R319–R336
Article
Google Scholar
Churski K, Kaminski TS, Jakiela S, Kamysz W, Baranska-Rybak W, Weibel DB, Garstecki P (2012) Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip 12(9):1629–1637
Article
Google Scholar
Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Koster S, Duan H, Holtze C, Weitz DA, Griffiths AD, Merten CA (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15(5):427–437
Article
Google Scholar
Clinical and Laboratory Standards Institute (2007) Performance standards for antimicrobial susceptibility testing; Seventeenth informational supplement vol 27. Wayne, PA
Courtois F, Olguin LF, Whyte G, Theberge AB, Huck WTS, Hollfelder F, Abell C (2009) Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays. Anal Chem 81(8):3008–3016
Article
Google Scholar
Cubaud T, Mason TG (2008) Capillary threads and viscous droplets in square microchannels. Phys Fluids 20(5):053302(1)–053302(11)
Derda R, Tang SKY, Whitesides GM (2010) Uniform amplification of phage with different growth characteristics in individual compartments consisting of monodisperse droplets. Angewandte Chemie-Intel Ed 49(31):5301–5304
Article
Google Scholar
Dhar N, McKinney JD (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol 10(1):30–38
Article
Google Scholar
Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143
Article
Google Scholar
Du GS, Pan JZ, Zhao SP, Zhu Y, den Toonder JMJ, Fang Q (2013) Cell-based drug combination screening with a microfluidic droplet array system. Anal Chem 85(14):6740–6747
Article
Google Scholar
Edd JF, Di Carlo D, Humphry KJ, Koster S, Irimia D, Weitz DA, Toner M (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8(8):1262–1264
Article
Google Scholar
Elhanati Y, Brenner N (2012) Metabolic variability in micro-populations. PLoS One 7(12):52105(1)–52105(9)
Fayer MD (2012) Dynamics of water interacting with interfaces, molecules, and ions. Acc Chem Res 45(1):3–14
Article
Google Scholar
Frenz L, Blank K, Brouzes E, Griffiths AD (2009) Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab Chip 9(10):1344–1348
Article
Google Scholar
Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85(13):2649–2651
Article
Google Scholar
Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3):437–446
Article
Google Scholar
Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12(12):2146–2155
Article
Google Scholar
Hashimoto M, Shevkoplyas SS, Zasonska B, Szymborski T, Garstecki P, Whitesides GM (2008) Formation of bubbles and droplets in parallel. Coupled flow-focusing geometries. Small 4(10):1795–1805
Article
Google Scholar
Hatch AC, Fisher JS, Tovar AR, Hsieh AT, Lin R, Pentoney SL, Yang DL, Lee AP (2011) 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip 11(22):3838–3845
Article
Google Scholar
Holtze C, Rowat AC, Agresti JJ, Hutchison JB, Angile FE, Schmitz CHJ, Koster S, Duan H, Humphry KJ, Scanga RA, Johnson JS, Pisignano D, Weitz DA (2008) Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8(10):1632–1639
Article
Google Scholar
Huebner A, Olguin LF, Bratton D, Whyte G, Huck WTS, de Mello AJ, Edel JB, Abell C, Hollfelder F (2008) Development of quantitative cell-based enzyme assays in microdroplets. Anal Chem 80(10):3890–3896
Article
Google Scholar
Ingham CJ, Sprenkels A, Bomer J, Molenaar D, van den Berg A, Hylckama Vlieg JE, de Vos WM (2007) The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci 104(46):18217–18222
Article
Google Scholar
Inoue I, Wakamoto Y, Moriguchi H, Okano K, Yasuda K (2001) On-chip culture system for observation of isolated individual cells. Lab Chip 1(1):50–55
Article
Google Scholar
Joensson HN, Svahn HA (2012) Droplet microfluidics—a tool for single-cell analysis. Angewandte Chemie-Intl Ed 51(49):12176–12192
Article
Google Scholar
Joensson HN, Samuels ML, Brouzes ER, Medkova M, Uhlen M, Link DR, Andersson-Svahn H (2009) Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidic droplets. Angewandte Chemie-Intl Ed 48(14):2518–2521
Article
Google Scholar
Kintses B, van Vliet LD, Devenish SRA, Hollfelder F (2010) Microfluidic droplets: new integrated workflows for biological experiments. Curr Opin Chem Biol 14(5):548–555
Article
Google Scholar
Kintses B, Hein C, Mohamed MF, Fischlechner M, Courtois F, Leine C, Hollfelder F (2012) Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem Biol 19(8):1001–1009
Article
Google Scholar
Kiss MM, Ortoleva-Donnelly L, Beer NR, Warner J, Bailey CG, Colston BW, Rothberg JM, Link DR, Leamon JH (2008) High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal Chem 80(23):8975–8981
Article
Google Scholar
Kukizaki M, Wada T (2008) Effect of the membrane wettability on the size and size distribution of microbubbles formed from Shirasu-porous-glass (SPG) membranes. Coll Sur A Physicochem Eng Asp 317(1–3):146–154
Article
Google Scholar
Lagus TP, Edd JF (2013) A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics. J Phys D Appl Phys 46: 114005 (21pp)
Google Scholar
Lee W, Walker LM, Anna SL (2009) Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Phys Fluids 21(3):032103
Article
Google Scholar
Lee YY, Narayanan K, Gao SJ, Ying JY (2012) Elucidating drug resistance properties in scarce cancer stem cells using droplet microarray. Nano Today 7(1):29–34
Article
Google Scholar
Leung K, Zahn H, Leaver T, Konwar KM, Hanson NW, Page AP, Lo CC, Chain PS, Hallam SJ, Hansen CL (2012) A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc Natl Acad Sci 109(20):7665–7670
Article
Google Scholar
Li W, Greener J, Voicu D, Kumacheva E (2009) Multiple modular microfluidic (M-3) reactors for the synthesis of polymer particles. Lab Chip 9(18):2715–2721
Article
Google Scholar
Lim J, Gruner P, Konrad M, Baret J-C (2013) Micro-optical lens array for fluorescence detection in droplet-based microfluidics. Lab Chip 13(8):1472–1475
Article
Google Scholar
Liu W, Kim HJ, Lucchetta EM, Du W, Ismagilov RF (2009) Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9(15):2153–2162
Article
Google Scholar
Marcoux PR, Dupoy M, Mathey R, Novelli-Rousseau A, Heran V, Morales S, Rivera F, Joly PL, Moy J-P, Mallard F (2011) Micro-confinement of bacteria into w/o emulsion droplets for rapid detection and enumeration. Coll Sur A Physicochem Eng Asp 377(1–3):54–62
Article
Google Scholar
Martin K, Henkel T, Baier V, Grodrian A, Schon T, Roth M, Kohler JM, Metze J (2003) Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices. Lab Chip 3(3):202–207
Article
Google Scholar
Matochko WL, Ng S, Jafari MR, Romaniuk J, Tang SKY, Derda R (2012) Uniform amplification of phage display libraries in monodisperse emulsions. Methods 58(1):18–27
Article
Google Scholar
Mazutis L, Araghi AF, Miller OJ, Baret J-C, Frenz L, Janoshazi A, Taly V, Miller BJ, Hutchison JB, Link D, Griffiths AD, Ryckelynck M (2009a) Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal Chem 81(12):4813–4821
Article
Google Scholar
Mazutis L, Baret J-C, Treacy P, Skhiri Y, Araghi AF, Ryckelynck M, Taly V, Griffiths AD (2009b) Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Lab Chip 9(20):2902–2908
Article
Google Scholar
Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8(5):870–891
Article
Google Scholar
McCalla SE, Tripathi A (2011) Microfluidic reactors for diagnostics applications. In: Yarmush ML, Duncan JS, Gray ML (eds) Annual review of biomedical engineering, vol 13. Annual Review of Biomedical Engineering, pp 321–343
Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8(4):283–298
Article
Google Scholar
Michaelis L, Menten ML, Johnson KA, Goody RS (2011) The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50(39):8264–8269
Article
Google Scholar
Miller EM, Wheeler AR (2008) A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 80(5):1614–1619
Article
Google Scholar
Miller OJ, El Harrak A, Mangeat T, Baret J-C, Frenz L, El Debs B, Mayot E, Samuels ML, Rooney EK, Dieu P, Galvan M, Link DR, Griffiths AD (2012) High-resolution dose-response screening using droplet-based microfluidics. Proc Natl Acad Sci 109(2):378–383
Article
Google Scholar
Moore GE, Ito E, Ulrich K, Sandberg AA (1966) Culture of human leukemia cells. Cancer 19(5):713–723
Article
Google Scholar
Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8(2):287–293
Article
Google Scholar
Nisisako T, Ando T, Hatsuzawa T (2012) High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces. Lab Chip 12(18):3426–3435
Article
Google Scholar
Niu X, deMello AJ (2012) Building droplet-based microfluidic systems for biological analysis. Biochem Soc Trans 40:615–623
Article
Google Scholar
Paegel BM, Joyce GF (2010) Microfluidic compartmentalized directed evolution. Chem Biol 17(7):717–724
Article
Google Scholar
Park J, Kerner A, Burns MA, Lin XXN (2011) Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One 6(2):17019(1)–17019(7).
Pekin D, Skhiri Y, Baret J-C, Le Corre D, Mazutis L, Ben Salem C, Millot F, El Harrak A, Hutchison JB, Larson JW, Link DR, Laurent-Puig P, Griffiths AD, Taly V (2011) Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11(13):2156–2166
Article
Google Scholar
Peters T (1995) All about albumin: biochemistry, genetics and medical applications. Academic Press, New York
Google Scholar
Platzman I, Janiesch J-W, Spatz JP (2013) Synthesis of nanostructured and biofunctionalized water-in-oil droplets as tools for homing T cells. J Am Chem Soc 135(9):3339–3342
Article
Google Scholar
Romanowsky MB, Abate AR, Rotem A, Holtze C, Weitz DA (2012) High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 12(4):802–807
Article
Google Scholar
Rosenfeld L, Fan L, Chen Y, Swoboda R, Tang SKY (2013) Break-up of droplets in a concentrated emulsion flowing through a narrow constriction. Soft Matter. doi:10.1039/C3SM51843D
Google Scholar
Schonbrun E, Abate AR, Steinvurzel PE, Weitz DA, Crozier KB (2010) High-throughput fluorescence detection using an integrated zone-plate array. Lab Chip 10(7):852–856
Article
Google Scholar
Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics. Rep Prog Phys 75(1):016601(1)–016601(41)
Sela Y, Magdassi S, Garti N (1995) Release of markers from the inner water phase of W/O/W emulsions stabilized by silicone-based polymeric surfactants. J Control Release 33(1):1–12
Article
Google Scholar
Silber JJ, Biasutti A, Abuin E, Lissi E (1999) Interactions of small molecules with reverse micelles. Adv Coll Interface Sci 82(1–3):189–252
Article
Google Scholar
Skhiri Y, Gruner P, Semin B, Brosseau Q, Pekin D, Mazutis L, Goust V, Kleinschmidt F, El Harrak A, Hutchison JB, Mayot E, Bartolo J-F, Griffiths AD, Taly V, Baret J-C (2012) Dynamics of molecular transport by surfactants in emulsions. Soft Matter 8(41):10618–10627
Article
Google Scholar
Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125(47):14613–14619
Article
Google Scholar
Srisa-Art M, Bonzani IC, Williams A, Stevens MM, deMello AJ, Edel JB (2009) Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst 134(11):2239–2245
Article
Google Scholar
Stan CA, Tang SKY, Whitesides GM (2009) Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate. Anal Chem 81(6):2399–2402
Article
Google Scholar
Stone HA (1994) Dynamics of drop deformation and breakup in viscous fluids. Annu Rev Fluid Mech 26:65–102
Article
Google Scholar
Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220
Article
Google Scholar
Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angewandte Chemie-Intern Ed 49(34):5846–5868
Article
Google Scholar
Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA (2007) Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett 99(9):094502(1)–094502(4).
Vladisavljevic GT, Shimizu M, Nakashima T (2005) Permeability of hydrophilic and hydrophobic Shirasu-porous-glass (SPG) membranes to pure liquids and its microstructure. J Membr Sci 250(1–2):69–77
Article
Google Scholar
Vladisavljevic GT, Shimizu M, Nakashima T (2006) Production of multiple emulsions for drug delivery systems by repeated SPG membrane homogenization: influence of mean pore size, interfacial tension and continuous phase viscosity. J Membr Sci 284(1–2):373–383
Article
Google Scholar
Vladisavljevic GT, Kobayashi I, Nakajima M (2012) Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluidics Nanofluidics 13(1):151–178
Article
Google Scholar
Wilson GS (1922) The proportion of viable bacteria in young cultures with especial reference to the technique employed in counting. J Bacteriol 7(4):405–446
Google Scholar
Woronoff G, El Harrak A, Mayot E, Schicke O, Miller OJ, Soumillion P, Griffiths AD, Ryckelynck M (2011) New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications. Anal Chem 83(8):2852–2857
Article
Google Scholar
Wu N, Courtois F, Zhu Y, Oakeshott J, Easton C, Abell C (2010) Management of the diffusion of 4-methylumbelliferone across phases in microdroplet-based systems for in vitro protein evolution. Electrophoresis 31(18):3121–3128
Article
Google Scholar
Xie H, Mire J, Kong Y, Chang M, Hassounah HA, Thornton CN, Sacchettini JC, Cirillo JD, Rao J (2012) Rapid point-of-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe. Nat Chem 4(10):802–809
Article
Google Scholar
Yuan JM, Martinezbilbao M, Huber RE (1994) Substitutions for glu-537 of beta-galactosidase from Escherichia coli cause large decreases in catalytic activity. Biochem J 299:527–531
Google Scholar
Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots—a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577
Google Scholar