Microfluidics and Nanofluidics

, Volume 17, Issue 1, pp 1–52 | Cite as

Particle separation and sorting in microfluidic devices: a review

  • P. Sajeesh
  • Ashis Kumar SenEmail author
Review Article


Separation and sorting of micron-sized particles has great importance in diagnostics, chemical and biological analyses, food and chemical processing and environmental assessment. By employing the unique characteristics of microscale flow phenomena, various techniques have been established for fast and accurate separation and sorting of microparticles in a continuous manner. The advancements in microfluidics enable sorting technologies that combine the benefits of continuous operation with small-sized scale suitable for manipulation and probing of individual particles or cells. Microfluidic sorting platforms require smaller sample volume, which has several benefits in terms of reduced cost of reagents, analysis time and less invasiveness to patients for sample extraction. Additionally, smaller size of device together with lower fabrication cost allows massive parallelization, which makes high-throughput sorting possible. Both passive and active separation and sorting techniques have been reported in literature. Passive techniques utilize the interaction between particles, flow field and the channel structure and do not require external fields. On the other hand, active techniques make use of external fields in various forms but offer better performance. This paper provides an extensive review of various passive and active separation techniques including basic theories and experimental details. The working principles are explained in detail, and performances of the devices are discussed.


Lift Force Side Channel Optical Tweezer Field Flow Fractionation Sorting Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abkarian M, Viallat A (2005) Dynamics of vesicles in a wall-bounded shear flow. Biophys J 89:1055–1066Google Scholar
  2. Adams JD, Soh HT (2010) Tunable acoustophoretic band-pass particle sorter. Appl Phys Lett 97:064103Google Scholar
  3. Adams JD, Kim U, Soh HT (2008) Multi target magnetic activated cell sorter. Natl Acad Sci PNAS 105(47):18165–18170Google Scholar
  4. Adams JD, Thevoz P, Bruus H, Soh HT (2009) Integrated acoustic and magnetic separation in microfluidic channels. Appl Phys Lett 95:254103Google Scholar
  5. Alshareef M, Metrakos N, Perez EJ, Azer F, Yang F, Yang X, Wang G (2011) Separation of tumor cells with dielectrophoresis-based microfluidic chip, Southeast biomedical engineering career conference-Herndon, October 28, 2011Google Scholar
  6. Aran K, Fok A, Sasso LA, Kamdar N, Gua Y, Su Q, Undar A, Zahn JD (2011) Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery. Lab Chip 11:2858–2868Google Scholar
  7. Arnold TJ, Hart SJ (2005) Enhanced optical chromatography in a PDMS microfluidic system. Opt Express 13(25):10406–104016Google Scholar
  8. Ashkin A (1997) Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci USA 94:4853–4860Google Scholar
  9. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290Google Scholar
  10. Ashok PC, Marchington RF, Mthunzi P, Krauss TF, Dholakia K (2010) Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation. Opt Express 18(6):6396–6408Google Scholar
  11. Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87zbMATHGoogle Scholar
  12. Balvin M, Sohn E, Iracki T, Drazer G, Frechette J (2009) Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Phys Rev Lett 103:078301Google Scholar
  13. Becker FF, Wang XB, Huang Y, Pethigt R, Vykoukal J, Gascoyne PRC (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci 92:860–864Google Scholar
  14. Becker FF, Gascoyne PRC, Huang Y, Wang XB, Yang J (2001) Method and apparatus for fractionation using conventional dielectrophoresis and filed flow fractionation, WO 01/1487Google Scholar
  15. Beech JP (2011) Micro fluidics separation and analysis of biological particles. PhD thesis, Lund UniversityGoogle Scholar
  16. Beech JP, Tegenfeldt JO (2008) Tunable separation in elastomeric micro fluidics devices. Lab Chip 8:657–659Google Scholar
  17. Beech JP, Jonsson P, Tegenfeldt JO (2009) Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip 9(18):2698–2706Google Scholar
  18. Beech JB, Holm SH, Adolfsson K, Tegen-feldt JO (2012) Sorting cells by size, shape and deformability. Lab Chip 12(6):1048–1051Google Scholar
  19. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008a) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20(101702):1–4Google Scholar
  20. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008b) Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8(11):1906–1914Google Scholar
  21. Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT (2010) Microfluidics for cell separation. Med Biol Eng Compu 48:999–1014Google Scholar
  22. Bhardwaj P, Bagdi P, Sen AK (2011) Microfluidic device based on a micro-hydrocyclone for particle-liquid separation. Lab Chip 11(23):4012–4021Google Scholar
  23. Bowman T, Frechette J, Drazer G (2012) Force driven separation of drops by deterministic lateral displacement. Lab Chip 12:2903–2908Google Scholar
  24. Brody JP, Osborn TD, Forster FK, Yager P (1996) A planar microfabricated fluid filter. Sens Actuators A 54:704–708Google Scholar
  25. Brunet E, Degre G, Okkels F, Tabeling P (2005) Aggregation of paramagnetic particles in the presence of a hydrodynamic shear. J Colloid Interface Sci 282:58–68Google Scholar
  26. Bruus H (2009) Theoretical microfluidics. Oxford University Press, ISBN 9780199235094Google Scholar
  27. Caldwell KD, Cheng ZQ, Hradecky P, Giddings JC (1984) Separation of human and animal cells by steric field-flow fractionation. Cell Biochem Biophys 6:233–251Google Scholar
  28. Carlo DD, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104(48):18892–18897Google Scholar
  29. Carlo DD, Edd JF, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles, using differential inertial focusing. Anal Chem 80:2204–2211Google Scholar
  30. Carlo DD, Edd JF, Humphry KJ, Stone HA, Toner M (2009) Particle segregation and dynamics in confined flows. Phys Rev Lett 102(9):094503–094504Google Scholar
  31. Chan P, Leal L (1979) The motion of a deformable drop in a second-order fluid. J Fluid Mech 92:131–170zbMATHGoogle Scholar
  32. Chatterjee A (2011) Size-dependant separation of multiple particles in spiral microchannels, Phd thesis, University of CincinnatiGoogle Scholar
  33. Chen X, Cui D, Liu C, Li H, Chen J (2007) Continuous Flow Microfluidic Device for Cell Separation, Cell Lysis and DNA Purification. Anal Chim Acta 84:2Google Scholar
  34. Chen X, Cui DF, Liu CC, Li H (2008) Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens Actuators B Chem 130(1):216–221Google Scholar
  35. Cheng I-F, Froude VE, Zhu Y, Chang H-C (2009) A continuous high-throughput bio particle sorter based on 3D traveling-wave dielectrophoresis. Lab Chip 9:3193–3201Google Scholar
  36. Chronis N, Lam W, Lee L (2001) In: Ramsey JM, van den Berg A (eds) Micro total analysis system. Kluwer Academic, Monterey, p 497Google Scholar
  37. Church C, Zhu J, Nieto J, Keten G, Ibarra E, Xuan X (2010) Continuous particle separation in a serpentine microchannel via negative and positive dielectrophoretic focusing. J Micromech Microeng 20:065011–065017Google Scholar
  38. Cranston HA, Boylan CW, Caroll GL, Sutera SP, Williamson JR, Gluzman IY, Krogstad DJ (1984) Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223(4634):400–403Google Scholar
  39. Crowley TA, Pizziconi V (2005) Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip 5:922–929Google Scholar
  40. Cui L, Holmes D, Morgan H (1994) The dielectrophoretic levitation and separation of latex beads in microchips, 22(18), pp. 3893–3901, October 2001, J Phys D Appl Phys, 27, 1571–1574Google Scholar
  41. Cummings EB, Singh AK (2003) Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental. Anal Chem 75:4724–4731Google Scholar
  42. Davis JA (2008) Micro fluidic separation of blood components through deterministic lateral displacement. PhD thesis, Princeton UniversityGoogle Scholar
  43. Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Stur JC, Austin RH (2006) Deterministic hydrodynamics: taking blood apart. PNAS 103(40):14779–14784Google Scholar
  44. Demierre N, Braschler T, Muller R, Renaud P (2008) Focusing and continuous separation of cells in an micro fluidic device using lateral dielectrophoresis. Sens Actuators B 132:388–396Google Scholar
  45. Devendra R, Drazer G (2012) Gravity driven deterministic lateral displacement for particle separation in micro fluidic devices. Anal Chem 84:10621–10627Google Scholar
  46. Dholakia K, Cizmar T (2011) Shaping the future of manipulation. Nat Photonics 5:335–342Google Scholar
  47. Dholakia K, Lee WM, Paterson L, MacDonald MP, McDonald R, Andreev I, Mthunzi P, Brown CTA, Marchington RF, Riches AC (2007) Optical separation of cells on potential energy landscapes: enhancement with dielectric tagging. IEEE J Sel Top Quantum Electron 13(6):1646–1654Google Scholar
  48. Ding X, Shi J, Lin S-CS, Yazdi S, Kiraly B, Huang TJ (2012) Tunable patterning of microparticles and cells using standing surface acoustic waves, The Royal Society of Chemistry, Lab chipGoogle Scholar
  49. Doddabasavana GB, PadmaPriya K, Nagabhushana K (2012) A review of recent advances in separation and detection of whole blood components. World J Sci Technol 2(5):05–09Google Scholar
  50. Doddi SK, Bagchi P (2008) Lateral migration of a capsule in a plane Poiseuille flow in a channel. Int J Multiph Flow 34:966–986Google Scholar
  51. Doh II, Cho Y-H (2005) A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens Actuators A121:59–65Google Scholar
  52. Dong Y, Skelley AM, Merdek KD, Sprott KM, Jiang C, Pierceall WE, Lin J, Stocum M, Carney WP, Smirnov DA (2013) Microfluidics and circulating tumor cells-review article. J Mol Diagn 15(2):149–157Google Scholar
  53. Dykes J, Lenshof A, Astrand-Grundstrom I-B, Laurell T, Scheding S (2011) Progenitor cell products using a novel micro-chip based acoustophoretic platform. PLoS ONE 6:8Google Scholar
  54. Evander M, Lenshof A, Laurell T, Nilsson J (2008) Acoustophoresis in wet-etched glass chips. Anal Chem 80:5178–5185Google Scholar
  55. Fahraeus R (1929) The suspension stability of the blood. Physiol Rev 2:241–274Google Scholar
  56. Faivre M, Abkarian M, Bickraj K, Stone HA (2005) Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. Lab Chip 5(7):778–784Google Scholar
  57. Faivre M, Abkarian M, Bickraj K, Stone HA (2006) Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. J Biorheol 43(2):147–159Google Scholar
  58. Frechette J, Drazer G (2009) Directional locking and deterministic separation in periodic arrays. J Fluid Mech 627:379–401zbMATHGoogle Scholar
  59. Gagnon ZR (2011) Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cell. Electrophoresis 32(18):2466–2487Google Scholar
  60. Gascoyne PRC, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23(13):1973–1983Google Scholar
  61. Gascoyne PRC, Wang XB, Huang Y, Becker FF (1997) Dielectrophoretic separation of cancer cells from blood. IEEE Trans Ind Appl 33(3):670–678Google Scholar
  62. Geng Z, Zhang L, Ju Y, Wang W, Li Z (2011) A plasma separation device based on centrifugal effect and Zweifach-Fung effect. In: 15th international conference on miniaturized systems for chemistry and life sciences, Seattle, Washington, USAGoogle Scholar
  63. Ghasemi M, Holm SH, Beech JP, Bjornmalm M, Tegenfeldt JO (2012) Separation of deformable hydrogel micro particles in deterministic lateral displacement devices. In: 16th International conference on miniaturized systems for chemistry and life sciences, Okinawa, JapanGoogle Scholar
  64. Giddings JC (1973) The conceptual basis of field-flow fractionation. J Chem Educ 50:667–669Google Scholar
  65. Giddings JC (1983) Hyperlayer field-flow fractionation. Sep Sci Technol 18:765–773Google Scholar
  66. Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1(1):22–40Google Scholar
  67. Gluckstad J (2004) Microfluidics: sorting particles with light. Nat Mater 3:9–10Google Scholar
  68. Gooneratne CP, Kosel J (2012) A micro-pillar array to trap magnetic beads in microfluidic systems. In: Sixth international conference on sensing technology (ICST)Google Scholar
  69. Gossett DR, Carlo DD (2009a) Particle focusing mechanisms in curving confined flows. Anal Chem 81:8459–8465Google Scholar
  70. Gossett DR, Carlo DD (2009b) Particle focusing mechanisms in curving confined flows. Anal Chem 81(20):8459–8465Google Scholar
  71. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Carlo DD (2010a) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267Google Scholar
  72. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Carlo DD (2010b) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267Google Scholar
  73. Guldiken R, Jo MC, Gallant ND, Demirci U, Zhe J (2012) Sheathless size-based acoustic particle separation. Sensors 12:905–922Google Scholar
  74. Gupta S, Feke DL, Manas-Zloczower I (1995) Fractionation of mixed particulate solids according to compressibility using ultrasonic standing wave fields. Chem Eng Sci 50:3275–3284Google Scholar
  75. Hammarstrom B, Evander M, Barbeau H, Bruzelius M, Larsson J, Laurell T, Nilsson J (2010) Non-contact acoustic cell trapping in disposable glass capillaries. Lab Chip 10:2251–2257Google Scholar
  76. Han K, Frazier A (2005) Microfluidic system for continuous magnetophoresis separation of suspended cells using their native magnetic properties. Proc Nanotech pp 187–190Google Scholar
  77. Han K-H, Han A, Frazier AB (2006) Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood. Biosens Bioelectron 21:1907–1914Google Scholar
  78. Harris NR, Hill M, Beeby S, Shen Y, White NM, Hawkes JJ, Coakley WT (2003) A silicon micro fluidic ultrasonic separator. Sens Actuators B 95:425–434Google Scholar
  79. Hart SJ, Terray A (2003) Refractive-index-driven separation of colloidal polymer particles using optical chromatography. Appl Phys Lett 83:25Google Scholar
  80. Hart SJ, Terray A, Arnold J, Leski TA (2008) Preparative optical chromatography with external collection and analysis. Optical Express 16(23):18782–18789Google Scholar
  81. Hartig R, Hausmann M, Cremer C (1995) In continuous focusing of biological particles by continuous immuno magnetic sorter: technique and applications. Electrophoresis 16:789–792Google Scholar
  82. Heller C (2001) Principles of DNA separation with capillary electrophoresis. Electrophoresis 22(4):629–643MathSciNetGoogle Scholar
  83. Herrmann J, Karweit M, Drazer G (2009) Separation of suspended particles in microfluidic systems by directional locking in periodic fields. Phys Rev E Stat Nonlin Soft Matter Phys 79(6):061404Google Scholar
  84. Holm S, Beech JP, Barrett MP, Tegenfeldt JO (2011) Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11:1326–1332Google Scholar
  85. Holmes D, Morgan H (2002) Cell positioning and sorting using dielectrophoresis. Eur Cells Mater 4(2):120–122Google Scholar
  86. Hou HW, Gan HY, Bhagat AAS, Li LD, Lim CT, Han J (2012) A microfluidics approach towards high-throughput pathogen removal from blood using margination. Biomicrofluidics 6:024115Google Scholar
  87. Hsu C-H, Carlo DD, Chen C, Irimia D, Toner M (2008) Microvortex for focusing, guiding and sorting of particles. Lab Chip 8:2128–2134Google Scholar
  88. Hu X, Bessette PH, Qian J, Meinhart CD, Daugherty PS, Soh HT (2005) Marker-specific sorting of rare cells using dielectrophoresis. Proc Natl Acad Sci 102(44):15757–15761Google Scholar
  89. Huang Y, Wang XB, Becker FF, Gascoyne PRC (1998) Separation of polystyrene microbeads using dielectrophoretic gravitational field-flow-fractionation. Biophys J 74:2689–2701Google Scholar
  90. Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990Google Scholar
  91. Huang S-B, Chen J, Wang J, Yang C-L, Wu M-H (2012) A new optically-induced dielectrophoretic (ODEP) force-based scheme for effective cell sorting. Int J Electrochem Sci 7:12656–12667Google Scholar
  92. Hur SC, Henderson-MacLennan NK, McCabe ERB, Carlo DD (2011) Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11:912Google Scholar
  93. Hyun K-A, Kim S-I, Kim Y-S, Han H, Jung H-I (2012) Continuous separation of circulating tumor cells from blood samples using a newly developed multi orifice flow fractionation (MOFF) chip 6th international conference on miniaturized systems for chemistry and life sciences, Okinawa, JapanGoogle Scholar
  94. Imasaka T, Kawabata Y, Kaneta T, lshidru Y (1995) Optical chromatography. Anal Chem 67:1763–1765Google Scholar
  95. Inglis DW, Riehn R, Austin RH, Sturm JC (2004) Continuous micro fluidic immunomagnetic cell separation. Appl Phys Lett 85(21):5093–5095Google Scholar
  96. Inglis DW, Davis JA, Austin RH, Sturm JC (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:655–658Google Scholar
  97. Inglis DW, Herman N, Vesey G (2010) Highly accurate deterministic lateral displacement device and its application to purification of fungal spores. Biomicrofluidics 4:024109Google Scholar
  98. Inglis DW, Lord M, Nordon RE (2011) Scaling deterministic lateral displacement arrays for high throughput and dilution-free enrichment of leukocytes. J Micromech Microeng 21(054024):1–8Google Scholar
  99. Jain A, Posner JD (2008) Particle dispersion and separation resolution of pinched flow fractionation. Anal Chem 80(5):1641–1648Google Scholar
  100. Ji HM, Samper V, Chen Y, Heng CK, Lim TM, Yobas L (2008) Silicon-based microfilters for whole blood cell separation. Biomed Microdevices 10(2):251–257Google Scholar
  101. Joensson HN, Uhlen M, Svahn HA (2010) Deterministic lateral displacement device for droplet separation by size: towards rapid clonal selection based on droplet shrinking. In: 14th International conference on miniaturized systems for chemistry and life sciences, Groningen, The NetherlandsGoogle Scholar
  102. Joensson HN, Uhlen M, Svahn HA (2011) Droplet size based separation by deterministic lateral displacement: separating droplets by cell-induced shrinking. Lab Chip 11:1305–1310Google Scholar
  103. Kaneta T, Ishidzu Y, Mishima N, Imasaka T (1997a) Theory of optical chromatography. Anal Chem 69(14):2701–2710Google Scholar
  104. Kaneta T, Ishidzu Y, Mishima N, Imasaka T (1997b) Theory of optical chromatography. Anal Chem 69:2701–2710Google Scholar
  105. Kapishnikov S, Kantsler V, Steinberg V (2006) Continuous particle size separation and size sorting using ultrasound in a micro channel. J Stat Mech: Theory Exp P01012Google Scholar
  106. Kawamata T, Yamada M, Yasuda M, Seki M (2008) Continuous and precise particle separation by electro-osmotic flow control in microfluidic device. Electrophoresis 29:1423–1430Google Scholar
  107. Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY (2008) Recent advances in microparticle continuous separation. IET Nanobiotechnol 2(1):1–13Google Scholar
  108. Kersaudy-Kerhoas M, Kavanagh DM, Dhariwal RS, Campbell CJ, Desmulliez MPY (2010a) Validation of a blood plasma separation system by biomarker detection, lab on chip, pp 1587–1595Google Scholar
  109. Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY, Jouvet L (2010b) Hydrodynamic blood plasma separation in microfluidic channels. J Microfluid Nanofluid 8(1):105–114Google Scholar
  110. Kim SB, Kim JH, Kim SS (2006) Theoretical development of in situ optical particle separator: cross-type optical chromatography. Appl Opt 45(27):6919–6924Google Scholar
  111. Kim U, Qian J, Kenrick SK, Daugherty PS, Soh HT (2008) Multi target dielectrophoresis activated cell sorter. Anal Chem 80:8656–8661Google Scholar
  112. Kim J, Massoudi M, Antaki JF, Gandini A (2012) Removal of malaria-infected red blood cells using magnetic cell separators: a computational study. Appl Math Comput 218:6841–6850zbMATHMathSciNetGoogle Scholar
  113. Knight JC, Birks TA, Cregan RF, St P, Russell J, De Sandro J-P (1998) Large mode area photonic crystal fibre. Electron Lett 34(13):1347–1348Google Scholar
  114. Kuberkar V, Czekaj P, Davis R (1998) Flux enhancement for membrane filtration of bacterial suspensions using high-frequency backpulsing. Biotechnol Bioeng 60(1):77–87Google Scholar
  115. Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9:2973–2980Google Scholar
  116. Kwon K, Sim T, Moon H-S, Lee J-G, Park JC, Jung H-I (2010) A novel particle separation method using multi-stage multi-orifice flow fractionation (MS-MOFF). In: 14th International conference on miniaturized systems for chemistry and life sciences, Groningen, The NetherlandGoogle Scholar
  117. Ladavac K, Kasza K, Grier DG (2004) Sorting mesoscopic objects with periodic potential landscapes: optical fractionation. Phys Rev E70:010901(R)Google Scholar
  118. Laurell T, Petersson F, Nilsson A (2006) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36:492–506Google Scholar
  119. Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Annual Chem Soc Rev 36:492–506Google Scholar
  120. Leal L (1980) Particle motions in a viscous fluid. Annu Rev Fluid Mech 12:435–476MathSciNetGoogle Scholar
  121. Lee MP, Padgett MJ (2012) Optical tweezers: a light touch. J Microsc 248:219–222Google Scholar
  122. Lee H, Purdon AM, Westervelt RM (2004) Manipulation of biological cells using a microelectromagnet matrix. Appl Phys Lett 85(6):1063–1065Google Scholar
  123. Lee G-B, Lin Y-H, Lin W-Y, Wang W, Guo T-F (2009) Optically-induced dielectrophoresis using polymer materials for biomedical applications, Transducers 2009, Denver, COGoogle Scholar
  124. Lee KH, Kim SB, Lee KS, Sung HJ (2010) Adjustable particle separation in pinched flow fractionation with optical force, ISFV14–14th international symposium on flow visualization, Daegu, KoreaGoogle Scholar
  125. Lee WC, Bhagat AAS, Huang S, Vliet KJV, Han J, Lim CT (2011a) High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip 11:1359Google Scholar
  126. Lee MG, Choi S, Park JK (2011b) Inertial separation in a contraction-expansion array micro channel. J Chromatogr A 1218(27):4138–4143Google Scholar
  127. Lee MG, Choi S, Kim H-J, Lim HK, Kim J-H, Huh N, Park J-K (2011c) High-yield blood plasma separation by modulating inertial migration in a contraction–expansion array microchannel, Transducers’11, Beijing, ChinaGoogle Scholar
  128. Lee MG, Choi S, Kim H-J, Lim HK, Kim J-H, Huh N, Park J-K (2011d) Inertial blood plasma separation in a contraction–expansion array microchannel. Appl Phys Lett 98:253702Google Scholar
  129. Lee H, Xu L, Ahn B, Lee K, Oh KW (2012) Continuous-flow in-droplet magnetic particle separation in a droplet-based microfluidic platform. J Microfluid Nanofluid 13:613–623Google Scholar
  130. Lei H, Zhang Y, Li B (2012) Particle separation in fluidic flow by optical fiber. Opt Express 20(2):1292–1300MathSciNetGoogle Scholar
  131. Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39:1203–1217Google Scholar
  132. Lenshof A, Ahmad-Tajudin A, Jaras K, Sward-Nilsson A-M, Aberg L, Marko-Varga G, Malm J, Lilja H, Laurell T (2009) Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal Chem 81:6030–6037Google Scholar
  133. Lenshof A, Magnusson C, Laurell T (2012) Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. Lab Chip 12:1210Google Scholar
  134. Leu TS, Weng CY (2009) Dynamics of dielectrophoretic field-flow fractionation(Dep-FFF) based micro sorter for cell separation. Mod Phys Lett B 23(3):389–392Google Scholar
  135. Liesfeld B, Nambiar R, Meiners JC (2003) Particle transport in asymmetric scanning-line optical tweezers. Phys Rev E 68:051907Google Scholar
  136. Lil M, Li S, Cao W, Li W, Wen W, Alici G (2012) Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis. J Micromech Microeng 22:095001–095009Google Scholar
  137. Lin Y-H, Lee G-B (2008) Optically induced flow cytometry for continuous microparticle counting and sorting. Biosens Bioelectron 24:572–578Google Scholar
  138. Lin Y-H, Lee G-B (2009) Optically-induced flow cytometry for continuous microparticle counting and sorting. Res Exp 11(4):1–3MathSciNetGoogle Scholar
  139. Lin S-J, Hung S-H, Jeng J-Y, Guo T-F, Lee G-B (2012) Manipulation of micro-particles by flexible polymer-based optically-induced dielectrophoretic devices. Opt Express 20(1):583–592Google Scholar
  140. Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Witz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem 118(16):2618–2622Google Scholar
  141. Liu Y, Lim KM (2011) Particle separation in microfluidics using a switching ultrasonic field. Lab Chip 11:3167–3173Google Scholar
  142. Liu C, Lagae L, Wirix-Speetjens R, Borghs G (2007a) On-chip separation of magnetic particles with different magnetophoretic mobilities. J Appl Phys 101(024913):1–4Google Scholar
  143. Liu C, Lagae L, Borghs G (2007b) Manipulation of magnetic particles on chip by magnetophoretic actuation and dielectrophoretic levitation. Appl Phys Lett 90:184109Google Scholar
  144. Liu Y, Hartono D, Lim K-M (2012) Cell separation and transportation between two miscible fluid streams using ultrasound. Biomicrofluidics 6:012802Google Scholar
  145. Lo M, Zahn JD (2012) Development of a multi-compartment microfiltration device for particle fractionation, 16th international conference on miniaturized systems for chemistry and life sciences, Okinawa, JapanGoogle Scholar
  146. Long BR, Heller M, Beech JP, Link H, Bruus H, Tegenfeldt JO (2008) Multi-directional sorting modes in deterministic lateral displacement devices. Physical Review E: Statistical, Nonlinear and Soft Matter Physics 78, 4, 2, 046304Google Scholar
  147. Loutherback K, Chou KS, Newman J, Puchall J, Austin RH, Sturm JC (2010) Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid Nanofluid 9:1143–1149Google Scholar
  148. Loutherback K, D’Silva J, Liu L, Wu A, Austin RH (2012) Deterministic separation of cancer cells from blood at 10 mL/min. Am Inst Phys Adv 2:042107Google Scholar
  149. Lubbersen YS, Schutyse MAI, Boom RM (2012) Suspension separation with deterministic ratchets at moderate Reynolds numbers. Chem Eng Sci 73:314–320Google Scholar
  150. Lubbersen YS, Dijkshoorn JP, Schutyser MAI, Boom RM (2013) Visualization of inertial flow in deterministic ratchets. Sep Purif Technol 109:33–39Google Scholar
  151. Ma B, Yao B, Peng F, Yan S, Lei M, Rupp R (2012) Optical sorting of particles by dual-channel line optical tweezers. J Opt 14:105702–105707Google Scholar
  152. MacDonald MP, Spalding GC, Dholakia K (2003) Microfluidic sorting in an optical lattice. Lett Nat 426(27):421–424Google Scholar
  153. Maenaka H, Yamada M, Yasuda M, Seki M (2008) Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Langmuir 24:4405–4410Google Scholar
  154. Magnaudet J, Takagi S, Legendre D (2003) Drag, deformation and lateral migration of a buoyant drop moving near a wall. J Fluid Mech 476:115–157zbMATHGoogle Scholar
  155. Manz A, Harrison D, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, Widmer HM (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems - capillary electrophoresis on a chip. J Chromotogr 593:253–258Google Scholar
  156. McGloin D (2006) Optical tweezers: 20 years on. Philos Trans R Soc A 364:3521–3537zbMATHGoogle Scholar
  157. Mielnik MM, Ekatpure RP, Saetran LR, Schonfeld F (2005) Sinusoidal cross flow microfiltration device- experimental and computational flow field analysis. Lab Chip 5(8):897–903Google Scholar
  158. Miltenyi S, Muller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11:231–238Google Scholar
  159. Monjushiro H, Hirai A, Watarai H (2000) Size dependence of laser-photophoretic efficiency of polystyrene microparticles in water. Langmuir 16(22):8539–8542Google Scholar
  160. Monjushiro H, Takeuchi K, Watarai H (2002) Anomalous laser photophoretic behavior of photo-absorbing organic droplets in water. Chem Lett 31:788–789Google Scholar
  161. Moorthy J, Beebe DJ (2003) In situ fabricated porous filters for Microsystems. Lab Chip 3:62–66Google Scholar
  162. Morgan H, Hughes MP, Green NG (1999) Separation of submicron bioparticles by dielectrophoresis. J Biophys 77(1):516–525Google Scholar
  163. Morijiri T, Sunahiro S, Senaha M, Yamada M, Seki M (2011) Sedimentation pinched-flow fractionation for size- and density-based particle sorting in microchannels. Microfluid Nanofluid 11:105–110Google Scholar
  164. Murthy SK, Sethu P, Vunjak-Novakovic G, Toner M, Radisic M (2006) Size-based microfluidic enrichment of neonatal rat cardiac cell populations. Biomed Microdevices 8(3):231–237Google Scholar
  165. Nam J, Lim H, Kim C, Kang JY, Shin S (2012) Density dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave. Biomicrofluidics 6:024120Google Scholar
  166. Napierala M, Nasilowski T, Beres-Pawlik E, Mergo P, Berghmans F, Thienpo H (2011) Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss. Opt Express 19(23):22628–226236Google Scholar
  167. Nascimento EM, Nogueira N, Silva T, Braschler T, Demierre N, Renaud P, Oliva AG (2008) Dielectrophoretic sorting on a microfabricated flow cytometer: label free separation of Babesia bovis infected erythrocytes. Bioelectrochemistry 73(2):123–128Google Scholar
  168. Neale SL, Mazilu M, Wilson JIB, Dholakia K, Krauss TF (2007) The resolution of optical traps created by Light Induced Dielectrophoresis (LIDEP). Opt Express 15(20):12619–12626Google Scholar
  169. Nilsson A, Petersson F, Jonsson H, Laurell T (2004) Acoustic control of suspended particles in micro fluidic chips. Lab Chip 4:131–135Google Scholar
  170. Oakey J, Allely J, Marr DWM (2002) Laminar-flow-based separations at the microscale. Biotechnol Prog 18(6):1439–1442Google Scholar
  171. Ostergaard S, Blankenstein G, Dirac H, Leistiko O (1999) A novel approach to the automation of clinical chemistry by controlled manipulation of magnetic particles. J Magn Magn Mater 194:156–162Google Scholar
  172. Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659Google Scholar
  173. Pamme N, Wilhelm C (2005) Micro total analysis systems 2005 In: K. Jensen (ed) Kluwer Academic Publishers, Boston, pp 1389Google Scholar
  174. Pamme N, Eijkel JCT, Manz A (2006) On-chip free-flow magnetophoresis: separation and detection of mixtures of magnetic particles in continuous flow. J Magn Magn Mater 307:237–244Google Scholar
  175. Park JS, Jung H (2009) Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction expansion microchannels. Anal Chem 81:8280–8288Google Scholar
  176. Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T (2004) Separation of lipids from blood utilizing ultrasonic standing waves in micro fluidic channels. Analyst 129:938–943Google Scholar
  177. Petersson F, Nilsson A, Jonsson H, Laurell T (2005) Carrier medium exchange through ultrasonic particle switching in microfluidic channels. Anal Chem 77:1216–1221Google Scholar
  178. Petersson F, Berg LA, Sward-Nilsson A, Laurell T (2007) Free flow acoustophoresis: micro fluidic-based mode of particle and cell separation. Anal Chem 79:5117–5123Google Scholar
  179. Pohl HA (1977) Dielectrophoresis: applications to the characterization and separation of cell. Methods Cell Sep Biol Sep 1:67–169Google Scholar
  180. Pries AR, Secomb TW, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res 32:654–667Google Scholar
  181. Quek R, Le DV, Chiam K-H (2011) Separation of deformable particles in deterministic lateral displacement devices. Phys Rev E83:056301Google Scholar
  182. Rainer D, Sandoz R, Effenhauser CS (2007) Microfluidic depletion of red blood cells from whole blood in high-aspect-ratio microchannels. Microfluid Nanofluid 3:47–53Google Scholar
  183. Redkar SG, Davis RH (1995) Cross-flow microfiltration with high-frequency reverse filtration. Am Inst Chem Eng J 41(3):501–508Google Scholar
  184. Reicherter M, Haist T, Wagemann EU, Tiziani HJ (1999) Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt Lett 24:9Google Scholar
  185. Reyes DR, Lossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems: introduction, theory, and technology. Anal Chem 74:2623–2636Google Scholar
  186. Rida A, Fernandez V, Gijs MAM (2003) Long-range transport of magnetic microbeads using simple planar coils placed in a uniform magnetostatic field. Appl Phys Lett 83(12):2396–2398Google Scholar
  187. Ripperger S, Altmann J (2002) Crossflow microfiltration: state of the art. Sep Purif Technol 26(1):19–31Google Scholar
  188. Rivet C, Lee H, Hirsch A, Hamilton S, Lu H (2011) Microfluidics for medical diagnostics and biosensors. Chem Eng Sci 66(7):1490–1507Google Scholar
  189. Russom A, Gupta AK, Nagrath S, Carlo DD, Edd JF, Toner M (2009) Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New J Phys 11:075025–075034Google Scholar
  190. Sai Y, Yamada M, Yasuda M, Seki M (2006) Continuous separation of particles using a microfluidic device equipped with flow rate control valves. J Chromatogr A 1127:214–220Google Scholar
  191. Segre G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209–210Google Scholar
  192. Seo J, Lean MH, Kole A (2007) Membrane-free microfiltration by asymmetric inertial migration. Appl Phys Lett 91:033901Google Scholar
  193. Sethu P, Sin A, Toner M (2006) Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip 6:83–89Google Scholar
  194. Sim TS, Kwon K, Park JC, Lee J-G, Jung H-I (2011) Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction expansion microchannels. Lab Chip 11:93Google Scholar
  195. Situma C, Hashimoto M, Soper SA (2006) Merging microfluidics with microarray-based bioassays: review article. Biomol Eng 23(5):213–231Google Scholar
  196. Sollier E, Cubizolles M, Faivre M, Fouillet Y, Achard JL (2009) A passive microfluidic device for plasma extraction from whole human blood, 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USAGoogle Scholar
  197. Soong CY, Li WK, Liu CH, Tzeng PY (2010) Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids. Opt Express 18(3):2168–2182Google Scholar
  198. Sunahiro S, Senaha M, Yamada M, Seki M (2008) Pinched flow fractionation device for size- and density-dependent separation of particles utilizing centrifugal pumping, Twelfth international conference on miniaturized systems for chemistry and life sciences, San Diego, California, USAGoogle Scholar
  199. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Mater 55(12):3989–4014Google Scholar
  200. Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1(1):15–30Google Scholar
  201. Takagi J, Yamada M, Yasudaa M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5:778–784Google Scholar
  202. Tam CKW, Hyman W (1973) Transverse motion of an elastic sphere in a shear field. J Fluid Mech 59:177–185zbMATHGoogle Scholar
  203. Tamagawa M, Monjushiro H, Watarai H (2003) Microgravity laser-photophoresis of high density microparticles in water. Colloids Surf A Physicochem Eng Asp 220:279–284Google Scholar
  204. Terray A, Taylor JD, Hart SJ (2009) Cascade optical chromatography for sample fractionation. Biomicrofluidics 3(044106):1–6Google Scholar
  205. Toner M, Irimia D (2005) Blood on a chip. Annu Rev Biomed Eng 7:77–103Google Scholar
  206. Tripathi S, Prabhakar A, Kumar N, Singh SG, Agrawal A (2013) Blood plasma separation in elevated dimension T-shaped microchannel. Biomed Microdevices 15:415–425Google Scholar
  207. Tsai H, Fang YS, Fuh CB (2006) Analytical and preparative applications of magnetic split-flow thin fractionation on several ion-labeled red blood cells. Biomagn Res Technol 4:6Google Scholar
  208. Vahey MD, Voldman J (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal Chem 80:3135–3143Google Scholar
  209. VanDelinder V, Groisman A (2006) Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal Chem 78:3765–3771Google Scholar
  210. VanDelinder V, Groisman A (2007) Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. Anal Chem 79(5):2023–2030Google Scholar
  211. Vaziri A, Gopinath A (2008) Cell and biomolecular mechanics in silico. Nat Mater 2007(7):15–23Google Scholar
  212. Vig AL, Kristensen A (2008) Separation enhancement in pinched flow fractionation. Appl Phys Lett 93(203507):1–3Google Scholar
  213. Wang XB, Huang Y, Becker FF, Gascoynet PRC (1994) A unified theory of dielectrophoresis and travelling wave dielectrophoresis. J Phys D Appl Phys 27:1571–1574Google Scholar
  214. Wang X-B, Yang J, Huang Y, Vykoukal J, Becker FF, Gascoyne PRC (2000) Cell separation by dielectrophoretic field-flow-fractionation. Anal Chem 72(4):832–839Google Scholar
  215. Wang W, Lin Y-H, Wen T-C, Guo T-F, Lee G-B (2010) Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices. Appl Phys Lett 96(113302):1–3Google Scholar
  216. Weddemann A, Wittbracht F, Auge A, Hütten A (2009) A hydrodynamic switch: microfluidic separation system for magnetic beads. Appl Phys Lett 94(17):3051–3052Google Scholar
  217. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373Google Scholar
  218. Wiklund M, Gunther C, Lemor R, Jager M, Fuhr G, Hertz HM (2006) Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Lab Chip 6:1537–1544Google Scholar
  219. Wu Z, Liu AQ, Hjort K (2007) Microfluidic continuous particle/cell separation via electroosmotic-flow-tuned hydrodynamic spreading. J Micromech Microeng 17:1992–1999Google Scholar
  220. Wu Z, Willing B, Bjerketorp J, Janssonbc JK, Hjort K (2009) Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9:1193–1199Google Scholar
  221. Xiao K, Grier DG (2010a) Multidimensional optical fractionation of colloidal particles with holographic verification. Phys Rev Lett 104:028302Google Scholar
  222. Xiao K, Grier DG (2010b) Sorting colloidal particles into multiple channels with optical forces: prismatic optical fractionation. Phys Rev E 82:051407Google Scholar
  223. Xin H, Lei H, Zhang Y, Li X, Li B (2011) Photothermal trapping of dielectric particles by optical fiber-ring. Opt Express 19(3):2711–2719Google Scholar
  224. Xin H, Bao D, Zhong F, Li B (2013) Photophoretic separation of particles using two tapered optical fibers. Laser Phys LettGoogle Scholar
  225. Xing C, Fu CD, Lulu Z (2009) Isolation of plasma from whole blood using a microfluidic chip in a continuous cross-flow. Chin Sci Bull 54(2):324–327Google Scholar
  226. Xue X, Patel MK, Kersaudy-Kerhoas M, Desmulliez MPY, Bailey C, Topham D (2012) Analysis of fluid separation in microfluidic T-channels. Appl Math Model 36:743–755zbMATHMathSciNetGoogle Scholar
  227. Yamada M, Seki M (2006) Microfluidic particle sorter employing flow splitting and recombining. Anal Chem 78:1357–1362Google Scholar
  228. Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76:5465–5471Google Scholar
  229. Yamadaa M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5:1233–1239Google Scholar
  230. Yang S, Undar A, Zahn JD (2006) A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6:871–880Google Scholar
  231. Yoon DH, Ha JB, Bahk YK, Arakawa T, Shoji S, Go JS (2009) Size-selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel. Lab Chip 9(1):87–90Google Scholar
  232. Zabow G, Assi F, Jenks R, Prentiss M (2002) Guided microfluidics by electromagnetic capillary focusing. Appl Phys Lett 80(8):1483–1485Google Scholar
  233. Zeng L, Balachandar S, Fischer A (2005) Wall-induced forces on a rigid sphere at finite Reynolds number. J Fluid Mech 536:1–25zbMATHGoogle Scholar
  234. Zhang Y, Lei H, Li Y, Li B (2012) Microbe removal using a micrometre-sized optical fiber. Lab Chip 12(7):1302–1308Google Scholar
  235. Zheng MJ, Qu YL, Zhang YZ, Dong ZL (2013) Optically induced dielectrophoresis based automatic assembly of micro/nano-devices. Integr Ferroelectr 145:24–31Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations