Microfluidics and Nanofluidics

, Volume 17, Issue 1, pp 53–71 | Cite as

Review on miniaturized paraffin phase change actuators, valves, and pumps

  • Sam Ogden
  • Lena Klintberg
  • Greger Thornell
  • Klas Hjort
  • Roger Bodén
Review Article

Abstract

During the last 15 years, miniaturized paraffin actuation has evolved through the need of a simple actuation principle, still able to deliver large strokes and high actuation forces at small scales. This is achieved by the large and rather incompressible volume expansion associated with the solid-to-liquid phase transition of paraffin. The common approach has been to encapsulate the paraffin by a stiff surrounding that directs the volume expansion toward a flexible membrane, which deflects in a directed stroke. However, a number of alternative methods have also been used in the literature. The most common applications to this date have been switches, positioning actuators, and microfluidic valves and pumps. This review will treat the historical background, as well as the fundamentals in paraffin actuation, including material properties of paraffin. Besides reviewing the three major groups of paraffin actuator applications—actuators, valves, and pumps—the modelling done on paraffin actuation will be explored. Furthermore, a section focusing on fabrication of paraffin microactuators is also included. The review ends with conclusions and outlook of the field, identifying unexplored potential of paraffin actuation.

Keywords

MEMS Microsystems Microfluidics Wax Thermal 

References

  1. Abi-Samra K, Hanson R, Madou M, Gorkin RA III (2011) Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. Lab Chip 11(4):723–726CrossRefGoogle Scholar
  2. Al-Faqheri W, Ibrahim F, Thio THG, Moebius J, Joseph K, Arof H, Madou M (2013) Vacuum/compression valving (VCV) using paraffin wax on a centrifugal microfluidic CD platform. PLoS ONE 8(3):e58523CrossRefGoogle Scholar
  3. Baek SK, Yoon YK, Jeon HS, Seo S, Park JH (2013) A wireless sequentially actuated microvalve system. J Micromech Microeng 23:045006CrossRefGoogle Scholar
  4. Bodén R (2008) Microactuators for powerful pumps. Dissertation, Uppsala University urn:nbn:se:uu:diva-9402Google Scholar
  5. Bodén R, Lehto M, Simu U, Thornell G, Hjort K, Schweitz J-Å (2005) A polymeric paraffin micropump with active valves for high-pressure microfluidics. In: Proceedings of Transducers’05, pp 201–204Google Scholar
  6. Bodén R, Lehto M, Schweitz J-Å (2006a) A paraffin driven linear microactuator for high force and large displacement applications. In: Proceedings of actuator, 10th international conference on new actuators, pp 720–723Google Scholar
  7. Bodén R, Lehto M, Simu U, Thornell G, Hjort K, Schweitz J-Å (2006b) A polymeric paraffin actuated high pressure micropump. Sens Actuators A Phys 127(1):88–93CrossRefGoogle Scholar
  8. Bodén R, Hjort K, Schweitz J-Å, Simu U (2008a) A metallic micropump for high-pressure microfluidics. J Micromech Microeng 18(11):115009CrossRefGoogle Scholar
  9. Bodén R, Lehto M, Margell J, Hjort K, Schweitz J-Å (2008b) On-chip liquid storage and dispensing for lab-on-a-chip applications. J Micromech Microeng 18(7):075036CrossRefGoogle Scholar
  10. Bodén R, Ogden S, Hjort K (2013) Microdispenser with continuous flow and selectable target volume for microfluidic high-pressure applications. J Microelectromech Syst. doi:10.1109/JMEMS.2013.2279976 Google Scholar
  11. Boustheen A, Homburg FGA, Somhorst MGAM, Dietzel A (2011) A layered polymeric μ-valve suitable for lab-on-foil: design, fabrication, and characterization. Microfluid Nanofluid 11(6):663–673CrossRefGoogle Scholar
  12. Boustheen A, Homburg FGA, Dietzel A (2012) A modular microvalve suitable for lab on a foil: manufacturing and assembly concepts. Microelectron Eng 98:638–641CrossRefGoogle Scholar
  13. Carlén ET, Mastrangelo CH (1999) Simple, high actuation power, thermally activated paraffin actuator. In: Proceedings of Transducers’99 conference, pp 1364–1367Google Scholar
  14. Carlén ET, Mastrangelo CH (2002a) Electrothermally activated paraffin microactuators. J Microelectromech Syst 11(3):165–174CrossRefGoogle Scholar
  15. Carlén ET, Mastrangelo CH (2002b) Surface micromachined paraffin actuated microvalve. J Microelectromech Syst 11(5):408–420CrossRefGoogle Scholar
  16. Charlesby A (1954) The crosslinking and degradation of paraffin chains by high-energy radiation. Proc R Soc Lond A 222(1148):60–74CrossRefGoogle Scholar
  17. Choi J-Y, Ruan J, Coccetti F, Lucyszyn S (2009) Three-dimensional RF MEMS switch for power applications. IEEE Trans Ind Electron 56(4):1031–1039CrossRefGoogle Scholar
  18. De Volder M, Reynaerts D (2010) Pneumatic and hydraulic microactuators: a review. J Micromech Microeng 20(4):043001CrossRefGoogle Scholar
  19. Dubois P, Vela E, Koster S, Briand D, Shea HR, de Rooij N-F (2006) Paraffin-PDMS composite thermo microactuator with large vertical displacement capability. In: Proceedings of actuator, 10th international conference on new actuators, pp 215–218Google Scholar
  20. Feng G-H, Chou Y-C (2011) Fabrication and characterization of thermally driven fast turn-on microvalve with adjustable backpressure design. Microelectron Eng 88(2):187–194CrossRefGoogle Scholar
  21. Freund M, Csikos R, Keszthelyi S, Mozes GY (1982) Paraffin products properties, technologies, applications. Elsevier Scientific Publishing Company, Amsterdam. ISBN:0-444-99712-1Google Scholar
  22. Gilbertson RG, Busch JD (1996) A survey of micro-actuator technologies for future spacecraft missions. J Br Interplanet Soc 49:129–138Google Scholar
  23. Goldschmidtboing F, Katus P, Geipel A and Woias P (2008) A novel self-heating paraffin membrane micro-actuator. In: Proceedings of MEMS, pp 531–534Google Scholar
  24. Gowreesunker BL, Tassou SA, Kolokotroni M (2012) Improved simulation of phase change processes in applications where conduction is the dominant heat transfer mode. Energy Build 47:353–359CrossRefGoogle Scholar
  25. Grönland T-A, Rangsten P, Nese M, Lang M (2007) Miniaturization of components and systems for space using MEMS-technology. Acta Astronaut 61(1–6):228–233CrossRefGoogle Scholar
  26. Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5(2):145–174CrossRefGoogle Scholar
  27. Jaw KS, Hsu CK, Lee JS (2001) The thermal decomposition behaviors of stearic acid, paraffin wax and polyvinyl butyral. Thermochim Acta 367–368:165–168CrossRefGoogle Scholar
  28. Jonsson J, Ogden S, Johansson L, Hjort K, Thornell G (2012) Acoustically enriching, large-depth aquatic sampler. Lab Chip 12(9):1619–1628CrossRefGoogle Scholar
  29. Kabei N, Kosuda M, Kagamibuchi H, Tashiro R, Mizuno H, Ueda Y, Tsuchiya K (1997) A thermal-expansion-type microactuator with paraffin as the expansive material. JSME Int J C 40(4):736–742CrossRefGoogle Scholar
  30. Klintberg L, Thornell G (2002) A thermal microactuator made by partial impregnation of polyimide with paraffin. J Micromech Microeng 12(6):849–854CrossRefGoogle Scholar
  31. Klintberg L, Karlsson M, Stenmark L, Schweitz J-Å, Thornell G (2002) A large stroke, high force paraffin phase transition actuator. Sens Actuators A Phys 96(2–3):189–195CrossRefGoogle Scholar
  32. Klintberg L, Karlsson M, Stenmark L, Thornell G (2003a) A thermally activated paraffin-based actuator for gas-flow control in a satellite electrical propulsion system. Sens Actuators A Phys 105(3):237–246CrossRefGoogle Scholar
  33. Klintberg L, Svedberg M, Nikolajeff F, Thornell G (2003b) Fabrication of a paraffin actuator using hot embossing of polycarbonate. Sens Actuators A Phys 103(3):307–316CrossRefGoogle Scholar
  34. Kobayashi T, Matsuoka S, Ueno A, Maeda R (2004) An easy fabrication technique for micro paraffin actuator and application to microvalve. In: Electrochemical Society proceedings, vol 2004-09, pp 330–335Google Scholar
  35. Kong Q, Ma J, Che C (2009) Theoretical and experimental study of volumetric change rate during phase change process. Int J Energy Res 33(5):513–525CrossRefGoogle Scholar
  36. Kratz H, Eriksson A, Karlsson M, Köhler J, Thornell G (2007) Analysis of thermal transients in an asymmetric silicon-based heat dissipation stage. IEEE Trans Compon Packag Technol 30(3):444–456CrossRefGoogle Scholar
  37. Krulevitch P, Lee AP, Ramsey PB, Trevino JC, Hamilton J, Northrup MA (1996) Thin film shape memory alloy microactuators. J Microelectromech Syst 5(4):270–282CrossRefGoogle Scholar
  38. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35–R64CrossRefGoogle Scholar
  39. Lee JS, Lucyszyn S (2005) A micromachined refreshable Braille cell. J Microelectromech Syst 14(4):673–682CrossRefGoogle Scholar
  40. Lee JS, Lucyszyn S (2007a) Design and pressure analysis for bulk micromachined electrothermal hydraulic microactuators using a PCM. Sens Actuators A Phys 133(2):294–300CrossRefGoogle Scholar
  41. Lee JS, Lucyszyn S (2007b) Thermal analysis for bulk-micromachined electrothermal hydraulic microactuators using a phase change material. Sens Actuators A Phys 135(2):731–739CrossRefGoogle Scholar
  42. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554CrossRefGoogle Scholar
  43. Lehto M, Bodén R (2008) A multi-stable miniature paraffin actuator. In: Proceedings of actuator, 11th international conference on new actuators, pp 864–867Google Scholar
  44. Lehto M, Boden R, Simu U, Hjort K and Schweitz J-Å (2004) Printed circuit board paraffin actuators for disposable microfluidic systems. In: Proceedings of actuator, 9th international conference on new actuators, pp 220–223Google Scholar
  45. Lehto M, Schweitz J-Å, Thornell G (2007) Binary mixtures of n-alkanes for tunable thermohydraulic actuators. J Microelectromech Syst 16(3):728–733CrossRefGoogle Scholar
  46. Lehto M, Bodén R, Simu U, Hjort K, Thornell G, Schweitz J-Å (2008) A polymeric paraffin microactuator. J Microelectromech Syst 17(5):1172–1177CrossRefGoogle Scholar
  47. Liu RH, Bonanno J, Yang J, Lenigk R, Grodzinski P (2004a) Single-use, thermally actuated paraffin valves for microfluidic applications. Sens Actuators B Chem 98(2–3):328–336CrossRefGoogle Scholar
  48. Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004b) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76(7):1824–1831CrossRefGoogle Scholar
  49. Malik A, Ogden S, Amberg G, Hjort K (2013) Modeling and analysis of a phase change material thermohydraulic actuator. J Microelectromech Syst 22(1):186–194CrossRefGoogle Scholar
  50. McCarthy DK (1968) Nonmagnetic, lightweight oscillating actuator. In: Proceedings of the 3rd aerospace mechanisms symposium, pp 163–170Google Scholar
  51. Mehling H, Cabeza LF (2008) Heat and cold storage with PCM an up to date introduction into basics and applications. Springer, Berlin. ISBN:978-3-540-68556-2Google Scholar
  52. Nguyen NT, Wereley S (2006) Fundamentals, applications of microfluidics, 2nd edn. Artech House, BostonGoogle Scholar
  53. Ogden S, Bodén R, Hjort K (2010) A latchable valve for high-pressure microfluidics. J Microelectromech Syst 19(2):396–401CrossRefGoogle Scholar
  54. Ogden S, Jonsson J, Thornell G, Hjort K (2012) A latchable high-pressure thermohydraulic valve actuator. Sens Actuators A Phys 188:292–297CrossRefGoogle Scholar
  55. Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16(5):R13–R39CrossRefGoogle Scholar
  56. Oh KW, Namkoong K, Park C (2005) A phase change microvalve using a meltable magnetic material: ferro-wax. In: Proceedings of μTAS 2005 conference, pp 554–556Google Scholar
  57. Pal R, Yang M, Johnson BN, Burke DT, Burns MA (2004) Phase change microvalve for integrated devices. Anal Chem 76(13):3740–3748CrossRefGoogle Scholar
  58. Park J-M, Cho Y-K, Lee B-S, Lee J-G, Ko C (2007) Multifunctional microvalves control by optical illumination and its application in centrifugal microfluidic devices. Lab Chip 7(5):557–564CrossRefGoogle Scholar
  59. Royer GG (1932) Improvements in or relating to thermostats, GB 374,046Google Scholar
  60. Sant HJ, Ho T, Gale BK (2010) An in situ heater for a phase-change-material-based actuation system. J Micromech Microeng 20(8):085039CrossRefGoogle Scholar
  61. Selvaganapathy P, Carlén ET, Mastrangelo CH (2003) Electrothermally actuated inline microfludic valves. Sens Actuators A Phys 104(3):275–282CrossRefGoogle Scholar
  62. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review of thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345CrossRefGoogle Scholar
  63. Sharma G, Klintberg L, Hjort K (2011a) Viton-based fluoroelastomer microfluidics. J Micromech Microeng 21(2):025016CrossRefGoogle Scholar
  64. Sharma G, Svensson S, Ogden S, Klintberg L, Hjort K (2011b) High-pressure stainless steel active membrane microvalves. J Micromech Microeng 21(7):075010CrossRefGoogle Scholar
  65. Sherwood JF (1957) Device for utilizing the thermal expansion of wax. US 2(815):642Google Scholar
  66. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026CrossRefGoogle Scholar
  67. Srinivasan P, Spearing SM (2009) Material selection for optimal design of thermally actuated pneumatic and phase change microactuators. J Microelectromech Syst 18(2):239–249CrossRefGoogle Scholar
  68. Srivastava S, Handoo J, Agrawal KM, Joshi GC (1993) Phase-transition studies in n-alkanes and petroleum-related waxes—a review. J Phys Chem Solids 54(6):639–670CrossRefGoogle Scholar
  69. Stange WC (1977) The MJS-77 magnetometer actuator. In: Proceedings of the 11th aerospace mechanisms symposium, pp 77–86Google Scholar
  70. Svedberg M, Nikolajeff F, Thornell G (2006) On the integration of flexible circuit boards with hot embossed thermoplastic structures for actuator purposes. Sens Actuators A Phys 125(2):534–547CrossRefGoogle Scholar
  71. Svensson S, Sharma G, Ogden S, Hjort K, Klintberg L (2010) High-pressure peristaltic membrane micropump with temperature control. J Microelectromech Syst 19(6):1462–1469CrossRefGoogle Scholar
  72. Tibbitts SF (1988) High output paraffin actuators: utilization in aerospace mechanisms. In: Proceedings of the 22nd aerospace mechanisms symposium, pp 13–28Google Scholar
  73. Tibbitts SF (1991) High-output paraffin linear motors: utilization in adaptive systems. In: Proceedings of SPIE, vol 1543, pp 388–399Google Scholar
  74. Vernet S (1938) Thermostat. US 2,115,501Google Scholar
  75. Vernet S (1945) Sealing means. US 2,368,181Google Scholar
  76. Vernet S, Kim J, Lee J (1941) Temperature responsive element. US 2,259,846Google Scholar
  77. Wang J, Severtson S, Stein A (2006) Significant and concurrent enhancement of stiffness, strength and toughness for paraffin wax through organoclay addition. Adv Mater 18:1585–1588CrossRefGoogle Scholar
  78. Wang J, Stevertson S, Geil P (2007) Brittle-ductile transitions and the toughening mechanism in paraffin/organo-clay nanocomposites. Mater Sci Eng, A 467:172–180CrossRefGoogle Scholar
  79. Yang B, Lin Q (2007) A latchable microvalve using phase change of paraffin wax. Sens Actuators A Phys 134(1):194–200CrossRefGoogle Scholar
  80. Yang B, Lin Q (2009) A latchable phase-change microvalve with integrated heaters. J Microelectromech Syst 18(4):860–867CrossRefGoogle Scholar
  81. Yoo JC, Choi YJ, Kang CJ, Kim Y-S (2007) A novel polydimethylsiloxane microfluidic system including thermopneumatic-actuated micropump and paraffin-actuated microvalve. Sens Actuators A Phys 139(1–2):216–220CrossRefGoogle Scholar
  82. Yousef H, Lehto M, Jäderblom T, Enculescu I and Hjort K (2005) A device integrating paraffin microactuator, fluidic compartment and microneedle array for fluid injection or sampling. In: Proceedings of μTAS, pp 157–159Google Scholar
  83. Zoller P, Walsh DJ (1995) Standard pressure–volume–temperature data for polymers. Technomic, Lancaster, CAGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sam Ogden
    • 1
  • Lena Klintberg
    • 1
  • Greger Thornell
    • 1
  • Klas Hjort
    • 1
  • Roger Bodén
    • 1
  1. 1.Micro Systems TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations